Skip to main content

Keywords

Controlled release; Creaming; Double emulsions; Drug delivery; Flocculation; Food colloids; Hydrocolloids; Liposomes; Microemulsions; Multiple emulsions; Polymer stabilization; Polysaccharides; Protein; Sedimentation; Steric stabilization

Definition

Double emulsions are liquid dispersion systems known also as emulsions of emulsions, in which the droplets of one dispersed liquid (emulsion, microemulsion, liposome, etc) are further dispersed in another liquid (water or oil), producing double layered liquid droplets. These structures are consisting of inner phase covered by emulsifiers (stabilizers), further dispersed and covered by another layer of emulsifiers in an outer phase. This large family of liquid dispersed systems is often termed water-in-oil-in water (W/O/W) or oil-in-water-in-oil (O/W/O) double emulsions regardless of what is the exact structure of the inner phase. Double emulsions have significant potential to serve as delivery vehicles as well as reservoirs for...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi T, Ida J, Wakita M (1999) Preparation of spherical and porous chitosan particles by suspension evaporation with O/W/O multiple emulsions. Polym J 31:319–323

    CAS  Google Scholar 

  • Antonov YA, Van Puyvelde P, Moldenaers P (2004) Interfacial tension of aqueous biopolymer mixtures close to the critical point. Int J Biol Macromol 34:29–35

    CAS  Google Scholar 

  • Asakura S, Oosawa F (1954) Interaction between two bodies immersed in a solution of macromolecules. J Chem Phys 22:1255–1256

    CAS  Google Scholar 

  • Aveyard R, Binks BP, Clint JH (2003) Emulsions stabilized solely by colloidal particles. Adv Colloid Interface Sci 100–102:503–546

    Google Scholar 

  • Benichou A, Aserin A, Garti N (2002a) Protein-polysaccharide interactions for stabilization of food emulsions. J Dispers Sci Technol 23:93–123

    CAS  Google Scholar 

  • Benichou A, Aserin A, Garti N (2002b) Double emulsion stabilized by new recognition hybrids of natural polymers. Polym Adv Technol 13:1019–1031

    CAS  Google Scholar 

  • Benichou A, Aserin A, Garti N (2004) Double emulsions stabilized with hybrids of natural polymers for entrapment and slow release of active matters. Adv Colloid Interface Sci 108:29–41

    Google Scholar 

  • BergenstÃ¥hl B (1997) Physiochemical aspects of emulsifier functionality. In: Hasenhuettl GL, Hartel RW (eds) Food emulsifiers and their applications. Chapman & Hall, New-York, pp 142–147

    Google Scholar 

  • Bibette J, Leal-Calderon F, Schmitt V, Poulin P (2002) Double emulsions. Emulsion science: basic principles- an overview. Springer Tracts Mod Phys 181:117–136

    Google Scholar 

  • Bonnet M, Cansell M, Berkaoui A, Ropers MH, Anton M, Leal-Calderon F (2009) Release rate profiles of magnesium from multiple W/O/W emulsions. Food Hydrocolloids 23:92–101

    CAS  Google Scholar 

  • Bonnet M, Cansell M, Placin F, Anton M, Leal-Calderon F (2010a) Impact of sodium caseinate concentration and location on magnesium release from multiple W/O/W emulsions. Langmuir 26:9250–9260

    CAS  Google Scholar 

  • Bonnet M, Cansell M, Placin F, Monteil J, Anton M, Leal-Calderon F (2010b) Influence of the oil globule fraction on the release rate profiles from multiple W/O/W emulsions. Colloids Surf B 78:44–52

    CAS  Google Scholar 

  • Bonnet M, Cansell M, Placin F, David-Briand E, Anton M, Leal-Calderon F (2010c) J Agric Food Chem 58:7762–7769

    CAS  Google Scholar 

  • Capron I, Costeux S, Djabourov M (2001) Water in water emulsions: phase separation and rheology of biopolymer solutions. Rheologica ACTA 40:441–456

    CAS  Google Scholar 

  • Cornec M, Wilde PJ, Gunning PA, Mackie AR, Husband FA, Parker ML, Clark DC (1998) Emulsion stability as affected by competitive adsorption between an oil-soluble emulsifier and milk proteins at the interface. J Food Sci 63:39–43

    CAS  Google Scholar 

  • Dickinson E (2003) Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids 17:25–39

    CAS  Google Scholar 

  • Dickinson E (2011) Double emulsions stabilized by food biopolymers. Food Biophys 6:1–11

    Google Scholar 

  • Dickinson E, Evison J, Owusu RK (1991) Preparation of fine protein stabilized water-in-oil-in-water emulsions. Food Hydrocolloids 5:481–485

    CAS  Google Scholar 

  • Dickinson E, Evison J, Owusu RK, Williams A (1994) Protein stabilized water-in-oil-water emulsions. In: Phillips GO, Williams PA, Wedlock DJ (eds) Gums and stabilizers for the food industry, vol 7. IRL Oxford University Press, Oxford, pp 91–101

    Google Scholar 

  • Evison J, Dickinson E, Owusu R, Williams A (1995) Formulation and properties of protein-stabilized water-in-oil-in-water multiple emulsions. In: Dickinson E, Lorient D (eds) Food macromolecules and colloids. Special Publication-Royal Society of Chemistry, Cambridge, pp 235–243

    Google Scholar 

  • Fechner A, Knoth A, Scherze I, Muschiolik G (2006) Stabilization of multiple emulsion by milk protein-polysaccharide interaction conjugate. Abstracts of Papers of the Food Hydrocolloids: self-assembly and material science Montreux, Switzerland, 23–26 April 2006, p B24

    Google Scholar 

  • Fechner A, Knoth A, Scherze I, Muschiolik G (2007) Stability and release properties of double-emulsions stabilised by caseinate-dextran conjugates. Food Hydrocolloids 21:943–952

    CAS  Google Scholar 

  • Feigin RI, Napper DH (1980) Depletion stabilization and depletion flocculation. J Colloid Interf Sci 75:525–541

    CAS  Google Scholar 

  • Fleer GJ, Scheutjens JHMH, Vincent B (1984) The stability of dispersions of hard spherical particles in the presence of non-adsorbing polymer. In: Goddord E, Vincent B (eds) Polymer adsorption and dispersion stability. ACS Symposium Series; American Chemical Society: Washington, DC, pp 245–263

    Google Scholar 

  • Florence AT, Whitehill D (1985) Stability and stabilization of water-in-oil-in-water multiple emulsion. In: Shah DO (ed) Macro-and microemulsions: theory and application. ACS Symposium Series, Washington, vol 272, pp 359–380

    Google Scholar 

  • Fredrokumbaradzi E, Simov A (1992) Effect of bovine serum albumim (BSA) on release of sulfacetamide sodium from multiple w/o/w emulsions. Pharmazie 47:388–389

    CAS  Google Scholar 

  • Frenkel M, Shwartz R, Garti N (1983) Stability, inversion, apparent and weighted HLB. J Colloid Interface Sci 94:174–178

    CAS  Google Scholar 

  • Gallarate M, Carlotti ME, Trotta M, Bovo S (1999) On the stability of ascorbic acid in emulsified systems for topical and cosmetic use. Int J Pharm 188:233–241

    CAS  Google Scholar 

  • Garti N, Benichou A (2001) Double emulsions for controlled-release applications-progress and trends. In: Sjöblom J (ed) Encyclopedic handbook of emulsion technology. Marcel Dekker, New York, pp 377–407

    Google Scholar 

  • Garti N, Lutz R (2004) Recent progress in double emulsions. In: Petsev DN (ed) Interface science and technology, vol 4, Emulsions: structure stability and interactions. Elsevier, Oxford, pp 557–605

    Google Scholar 

  • Garti N, Reichman D (1994) Surface-properties and emulsification activity of galactomannans. Food Hydrocolloids 8:155–173

    CAS  Google Scholar 

  • Garti N, Wicker L (2005) Pectin methylesterase modified pectin interaction with whey protein isolate and stability of double emulsions. Abstracts of Papers of the American Chemical Society, 229. U295-U296 119-CELL Part 1

    Google Scholar 

  • Garti N, Aserin N, Cohen Y (1994) Mechanistic considerations on the release of electrolytes from multiple emulsions stabilized by BSA and nonionic surfactants. J Control Release 29:41–51

    CAS  Google Scholar 

  • Garti N, Madar Z, Aserin A, Sternheim B (1997) Fenugreek galactomannans as food emulsifiers. Food Sci Technol-Lebensmittel-Wissenschaft Technologie 30:305–311

    CAS  Google Scholar 

  • Garti N, Aserin A, Tiunova I, Binyamin H (1999) Double emulsions of water-in-oil-in-water stabilized by alpha-form fat microcrystals. Part 1: Selection of emulsifiers and fat microcrystalline particles. J Am Oil Chem Soc 76:383–389

    CAS  Google Scholar 

  • Grinberg VY, Tolstoguzov VB (1997) Thermodynamic incompatibility of proteins and polysaccharides in solutions. Food Hydrocolloids 11:145–158

    CAS  Google Scholar 

  • Grossiord JL, Seiller M (2001) W/O/W multiple emulsions: a review of the release mechanisms by break-up of the oily membrane. STP Pharm Sci 11:331–339

    CAS  Google Scholar 

  • Ibanoglu E (2005) Effect of hydrocolloids on the thermal denaturation of proteins. Food Chem 90:621–626

    CAS  Google Scholar 

  • Jaimes-Lizcano YA, Lawson LB, Papadopoulos KD (2011) Oil-frozen W1/O/W2 double emulsions for dermal biomacromolecular delivery containing ethanol as chemical penetration enhancer. J Pharm Sci 100(4):1398–1406

    CAS  Google Scholar 

  • Jerdjev AM, Hunter RJ, Beattie JK (2006) Self-depletion flocculation of tetralin oil-in-water emulsions. Langmuir 22:84–87

    Google Scholar 

  • Jiao J, Burgess DJ (2003) Rheology and stability of water-in-oil-in-water multiple emulsions containing Span 83 and Tween 80. AAPS PharmSci, 5, Art. No. 7

    Google Scholar 

  • Jiao J, Rhodes DG, Burgess DJ (2002) Multiple emulsion stability: pressure balance and interfacial film strength. J Colloid Interface Sci 250:444–450

    CAS  Google Scholar 

  • Kanouni M, Rosano HL, Naouli N (2002) Preparation of a stable double emulsion (W1/O/W2): role of the interfacial films on the stability of the system. Adv Colloid Interface Sci 99:229–254

    CAS  Google Scholar 

  • Kerstens S, Murray BS, Dickinson E (2006) Microstructure of β-lactoglobulin-stabilized emulsions containing non-ionic surfactant and excess free protein: influence of heating. J Colloid Interface Sci 296:332–341

    CAS  Google Scholar 

  • Kim SY, Lee YM (1999) Lipid nanospheres containing vitamin A or vitamin E: evaluation of their stabilities and in vitro skin permeability. Indust Engin Chem Res 5:306–313

    Google Scholar 

  • Kim JW, Kang HH, Suh KD, Oh SG (2003) Stabilization of water-soluble antioxidant in water-in-oil-in-water double emulsions. J Dispers Sci Technol 24:833–839

    CAS  Google Scholar 

  • Kim HJ, Cho YH, Bae EK, Shin TS, Choi SW, Choi KH, Park J (2005) Development of W/O/W multiple emulsion formulation containing Burkholderia gladioli. J Microbiol Biotechnol 15:29–34

    CAS  Google Scholar 

  • Kim HJ, Decker EA, McClements DJ (2006) Preparation of multiple emulsions based on thermodynamic incompatibility of heat-denatured whey protein and pectin solutions. Food Hydrocolloids 20:586–595

    CAS  Google Scholar 

  • Klein M, Aserin A, Svitov I, Garti N (2010a) Enhanced stabilization of cloudy emulsions with gum Arabic and whey protein isolate. Colloids Surf B 77:75–81

    CAS  Google Scholar 

  • Klein M, Aserin A, Ben Ishai P, Garti N (2010b) Interactions between whey protein isolate and gum Arabic. Colloids Surf B 79:377–383

    CAS  Google Scholar 

  • Knoth A, Scherze I, Kramer M, Muschiolik G (2006) Influence of milk protein-polysaccharide interaction on the properties of W/O/W multiple emulsions. Abstracts of Papers of the Food Hydrocolloids: self-assembly and material science Montreux, Switzerland, 23–26 April 2006, p B23

    Google Scholar 

  • Koberstein-Hajda A, Dickinson E (1996) Stability of water-in-oil-in-water emulsions containing faba bean proteins. Food Hydrocolloids 10:251–254

    CAS  Google Scholar 

  • Kuhl TL, Berman AD, Hui SW, Israelachvili JN (1998) Part 1. Direct measurement of depletion attraction and thin film viscosity between lipid bilayers in aqueous polyethylene glycol solutions. Macromolecules 31:8250–8257

    CAS  Google Scholar 

  • Leal-Calderon F, Homer S, Goh A, Lundin L (2012) W/O/W emulsions with high internal droplet volume fraction. Food Hydrocolloids 27:30–41

    CAS  Google Scholar 

  • Li B, Jiang Y, Liu F, Chai Z, Li Y, Li Y, Leng X (2012) Synergistic effects of whey protein-polysaccharide complexes on the controlled release of lipid-soluble and water-soluble vitamins in W1/O/W2 double emulsion systems. Int J Food Sci Technol 47:248–254

    Google Scholar 

  • Lin CY, Wang KH (2003) The fuel properties of three-phase emulsions as an alternative fuel for diesel engines. Fuel 82:1367–1375

    CAS  Google Scholar 

  • Lorenceau E, Utada AS, Link DR, Cristobal G, Joanicot M, Weitz DA (2005) Generation of polymerosomes from double-emulsions. Langmuir 21:9183–9186

    CAS  Google Scholar 

  • Magdassi S, Garti N (1986) A kinetic model for release of electrolytes from W/O/W multiple emulsions. J Control Release 3:273–277

    CAS  Google Scholar 

  • Mao Y, Cates ME, Lekkerkerker HNW (1995a) Depletion force in colloidal systems. Physica A 222:10–24

    CAS  Google Scholar 

  • Mao Y, Cates ME, Lekkerkerker HNW (1995b) Depletion stabilization by semidilute rods. Phys Rev Lett 75:4548–4551

    CAS  Google Scholar 

  • Matsumoto S (1986) W/O/W–type multiple emulsion with a view to possible food applications. J Texture Stud 17:141–159

    CAS  Google Scholar 

  • Matsumoto S, Kida Y, Yonezawa D (1976) An attempt at preparing water-in-oil-in-water multiple-phase emulsions. J Colloid Interface Sci 57:353–361

    CAS  Google Scholar 

  • Matsumoto S, Koh Y, Michiura A (1985) Preparation of water/olive oil/water emulsions in an edible form on the basis of phase inversion technique. J Dispers Sci Technol 6:507–521

    CAS  Google Scholar 

  • Maydani Y (1994) Multiple emulsions based on lysozyme as emulsifier. Graduate Thesis The Hebrew University of Jerusalem

    Google Scholar 

  • Mezzenga R, Folmer BM, Hughes E (2004) Design of double emulsions by osmotic pressure tailoring. Langmuir 20:3574–3582

    CAS  Google Scholar 

  • Muguet V, Seiller M, Barratt G, Ozer O, Marty JP, Grossiord JL (2001) Formulation of shear rate sensitive multiple emulsions. J Control Release 70:37–49

    CAS  Google Scholar 

  • Myers D (1998a) Surfactant Science and Technology. VCH, New-York, pp 209–253

    Google Scholar 

  • Myers D (1998b) Surfactant Science and Technology. VCH, New York, pp 216–219

    Google Scholar 

  • Nisisako T, Okushima S, Torii T (2005) Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system. Soft Matter 1:23–27

    CAS  Google Scholar 

  • Nunes MC, Raymundo A, Sousa I (2006) Rheological behavior and microstructure of pea protein/κ-carrageenan/starch gels with different setting conditions. Food Hydrocolloids 20:106–113

    CAS  Google Scholar 

  • Okochi H, Nakano M (2000) Preparation and evaluation of W/O/W type emulsion containing vancomycin. Adv Drug Deliv Rev 45:5–26

    CAS  Google Scholar 

  • Okushima S, Nisisako T, Torii T, Higuchi T (2004) Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir 20:9905–9908

    CAS  Google Scholar 

  • Omotosho LA, Law KT, Whatelely TL, Florence AT (1986) The stabilization of W/O/W emulsions by interfacial interaction between albumin and nonionic surfactant. Colloid Surf 20:133–143

    CAS  Google Scholar 

  • Oza KP, Frank SG (1989) Multiple emulsions stabilized by colloidal microcrystalline cellulose. J Dispers Sci Technol 10:163–185

    CAS  Google Scholar 

  • Ozer O, Muguet V, Roy E, Grossiord JL, Seiller M (2000) Stability study of W/O/W viscosified multiple emulsions. Drug Dev Ind Pharm 26:1185–1189

    CAS  Google Scholar 

  • Perrechil FA, Cunha RL (2012) Development of multiple emulsions based on the repulsive interaction between sodium caseinate and LBG. Food Hydrocolloids 26:126–134

    CAS  Google Scholar 

  • Radford SJ, Dickinson E (2004) Depletion flocculation of caseinate-stabilised emulsions: what is the optimum size of the non-adsorbed protein nano-particles? Colloids Surfaces A 238:71–81

    CAS  Google Scholar 

  • Ribotta PD, Ausar SF, Beltramo DM, Leon AE (2005) Interactions of hydrocolloids and sonicated-gluten proteins. Food Hydrocolloids 19:93–99

    CAS  Google Scholar 

  • Sapei L, Naqvi MA, Rousseau D (2012) Stability and release properties of double emulsions for food applications. Food Hydrocolloids 27:316–323

    CAS  Google Scholar 

  • Schulz PC, Rodriguez MS, Del Blanco LF (1998) Emulsification properties of chitosan. Colloid Polym Sci 276:1159–1165

    CAS  Google Scholar 

  • Seifriz W (1925) Studies in emulsion III. Double reversal of oil emulsions occasioned by the same electrolyte. J Phys Chem 29:738–749

    Google Scholar 

  • Shan-Chen Y, Bochot A, Le Bas G, Chéron M, Mahuteau J, Grossiord JL, Seiller M, Duchêne D (2003) Effect of camphor/cyclodextrin complexation on the stability of O/W/O multiple emulsions. Int J Pharm 261:1–8

    Google Scholar 

  • Shields M, Ellis R, Saunders BR (2001) A creaming study of weakly flocculated and depletion flocculated oil-in-water emulsions. Colloids Surf A 178:265–276

    CAS  Google Scholar 

  • Shima M, Tanaka M, Fujii T, Egawa K, Kimura Y, Adachi S, Matsuno R (2006) Oral administration of insulin included in fine W/O/W emulsions to rats. Food Hydrocolloids 20:523–531

    CAS  Google Scholar 

  • Su JH, Flanagan J, Hemar Y, Singh H (2006) Synergistic effects of polyglycerol ester of polyricinoleic acid and sodium caseinate on the stabilisation of water-oil-water emulsions. Food Hydrocolloids 20:261–268

    CAS  Google Scholar 

  • Su JH, Flanagan J, Singh H (2008) Improving encapsulation efficiency and stability of water-in-oil-in-water emulsions using a modified gum arabic (Acacia (sen) SUPER GUM (TM)). Food Hydrocolloids 22:112–120

    CAS  Google Scholar 

  • Su J, Flanagan J, Hemar Y, Singh H (2006) Synergistic effects of polyglycerol ester of polyricinoleic acid and sodium caseinate on the stabilisation of water–oil–water emulsions. Food Hydrocolloids 20:261–268

    CAS  Google Scholar 

  • Tolstoguzov VB (2003) Some thermodynamic considerations in food formulation. Food Hydrocolloids 17:1–23

    CAS  Google Scholar 

  • Uruakpa FO, Arntfield SD (2005) Emulsifying characteristics of commercial canola protein-hydrocolloid systems. Food Res Int 38:659–672

    CAS  Google Scholar 

  • Uruakpa FO, Arntfield SD (2006) Surface hydrophobicity of commercial canola proteins mixed with kappa-carrageenan or guar gum. Food Chem 95:255–263

    CAS  Google Scholar 

  • Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308:537–541

    CAS  Google Scholar 

  • Vasiljevic D, Parojcic J, Primorac M, Vuleta G (2006) An investigation into the characteristics and drug release properties of multiple W/O/W emulsion systems containing low concentration of lipophilic polymeric emulsifier. Int J Pharm 309:171–177

    CAS  Google Scholar 

  • Vaziri A, Warburton B (1994) Some preparative variable influencing the properties of W/O/W multiple emulsions. J Microencapsul 11:649–656

    CAS  Google Scholar 

  • Versteeg J (1978) Stabilized static liquid membrane compositions. U.S. patent 4,083,798

    Google Scholar 

  • Walz JY, Sharma A (1994) Effect of long range interactions on the depletion force between colloidal particles. J Colloid Interface Sci 168:485–496

    CAS  Google Scholar 

  • Wang YF, Tao Z, Gang H (2006) Structural evolution of polymer-stabilized double emulsions. Langmuir 22:67–73

    Google Scholar 

  • Weiss J, Scherze I, Muschiolik G (2005) Polysaccharide gel with multiple emulsions. Food Hydrocolloids 19:605–615

    CAS  Google Scholar 

  • Wen LX, Papadopoulos KD (2001) Effects of osmotic pressure on water transport in W1/O/W2 emulsions. J Colloid Interface Sci 235:398–404

    CAS  Google Scholar 

  • Wilde PJ, Clark DC (1993) The competitive displacement of β-lactoglobulin by Tween 20 from oil-water and air-water interface. J Colloid Interface Sci 155:48–53

    CAS  Google Scholar 

  • Yoshida K, Sekine T, Matsuzaki F, Yanaki T, Yamaguchi M (1999) Stability of vitamin A in oil-in-water-in-oil-type multiple emulsions. J Am Oil Chem Soc 76:195–200

    CAS  Google Scholar 

  • Yu SC, Bochot A, Cheron M, Seiller M, Grossiord JL, Le Bas G, Duchene D (1999) Design and evaluation of an original o/w/o multiple emulsion. STP Pharm Sci 9:273–277

    CAS  Google Scholar 

  • Zhang W, Miyakawa T, Uchida T, Goto S (1992) Preparation of stable w/o/w type multiple emulsion containing water-soluble drugs and in-vitro evaluation of its drug releasing properties. J Pharm Soc Jpn 112:73–80

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nissim Garti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Garti, N., Aserin, A. (2013). Double Emulsions. In: Tadros, T. (eds) Encyclopedia of Colloid and Interface Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20665-8_26

Download citation

Publish with us

Policies and ethics