Skip to main content

One Alternative to Germ Cells Cryopreservation: Cryobanking of Somatic Cells in Sturgeon

  • Chapter
  • First Online:
Biology and Conservation of the European SturgeonAcipenser sturioL. 1758

Abstract

Cryobanking of somatic cells is one option for preserving both parental genomes when gametes are not available or are unsuitable for cryopreservation. Somatic cells can be obtained from skin or fin biopsies, which are easy to collect long before sexual maturation is reached. This chapter develops a strategy to be considered for cryobanking of Acipenser sturio somatic cells, with the example of fin as a cell reservoir. The collected fins should be appropriately stored to allow shipping to laboratory facilities where they will be either frozen as a whole, or cultured to grow out cells which will be cryopreserved thereafter. Fish reconstruction from somatic cells will require the use of nuclear transfer technology, where the nucleus of the cryopreserved cell is transferred into the enucleated oocyte of a closely related species. The promises and drawbacks of this reconstruction technology are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akimenko MA, Mari-Beffa M, Becerra J, Geraudie J (2003) Old questions, new tools, and some answers to the mystery of fin regeneration. Dev Dyn 226:190–201

    Article  PubMed  Google Scholar 

  • Briggs R, King TJ (1952) Transplantation of living nuclei from blastula cells into enucleated frogs’eggs. Proc Natl Acad Sci USA 38:455–463

    Article  PubMed  CAS  Google Scholar 

  • Bubenshchikova E, Kaftanovskaya E, Motosugi N, Fujimoto T, Arai K, Kinoshita M, Hashimoto H, Ozato K, Wakamatsu Y (2007) Diploidized eggs reprogram adult somatic cell nuclei to pluripotency in nuclear transfer in medaka fish (Oryzias latipes). Dev Growth Differ 49:699–709

    Article  PubMed  CAS  Google Scholar 

  • Bubenshchikova E, Kaftanovskaya E, Hattori M, Kinoshita M, Adachi T, Hashimoto H, Ozato K, Wakamatsu Y (2008) Nuclear transplants from adult somatic cells generated by a novel method using diploidized eggs as recipients in medaka fish (Oryzias latipes). Clon Stem Cell 10:443–452

    Article  CAS  Google Scholar 

  • Cardona-Costa J, Roig J, Perez-Camps M, Garcia-Ximenez F (2006) Vitrification of caudal fin explants from zebrafish adult specimens. Cryo Lett 27:329–332

    CAS  Google Scholar 

  • Colombo RE, Garvey JE, Wills PS (2007) A guide to the embryonic development of the shovelnose sturgeon (Scaphirhynchus platorynchus), reared at a constant temperature. J Appl Ichtyol 23:402–410

    Article  Google Scholar 

  • Corley-Smith GE, Brandhorst BP (1999) Preservation of endangered species and populations: a role for genome banking, somatic cell cloning, and androgenesis? Mol Reprod Dev 53:363–367

    Article  PubMed  CAS  Google Scholar 

  • Fontana F, Manfredi M, Rossi R, Bronzi P, Arlati G (1995) Established cell lines from three sturgeon species. Sturgeon Quarterly 3:6–7

    Google Scholar 

  • Fontana F, Lanfredi M, Kirschbaum F, Garrido-Ramos MA, Robles F, Forlani A, Congiu L (2008) Comparison of karyotypes of Acipenser oxyrinchus and A. sturio by chromosome banding and fluorescent in situ hybridization. Genetica 132:281–286

    Article  PubMed  Google Scholar 

  • Gasaryan KG, Hung NM, Neyfakh AA, Ivanenkov VV (1979) Nuclear transplantation in teleost Misgurnus fossilis L. Nature 280:585–587

    Article  PubMed  CAS  Google Scholar 

  • Grunina AS, Recoubratsky AV, Tsvetkova LI, Barmintsev VA (2006) Investigation on dispermic androgenesis in sturgeon fish. The first successful production of androgenetic sturgeons with cryopreserved sperm. Int J Refrig 29:379–386

    Article  CAS  Google Scholar 

  • Hagedorn M, Kleinhans FW, Artemov D, Pilatus U (1998) Characterization of a major permeability barrier in the zebrafish embryo. Biol Reprod 59:1240–1250

    Article  PubMed  CAS  Google Scholar 

  • Hattori M, Hashimoto H, Bubenshchikova E, Wakamatsu Y (2011) Nuclear Transfer of Embryonic Cell Nuclei to Non-enucleated Eggs in Zebrafish, Danio rerio. Int J Biol Sci 7:460–468

    Google Scholar 

  • Hongtuo F, Chingjiang W (2001) Nuclear transfer in loach (Paramisgurnus dabryanus Sauvage) by cell-to-cell electrofusion. Aquacult Res 32:267–275

    Article  Google Scholar 

  • Huang H, Ju B, Lee KY, Lin S (2003) Protocol for nuclear transfer in zebrafish. Clon Stem Cell 5:333–337

    Article  CAS  Google Scholar 

  • Ju B, Huang H, Lee KY, Lin S (2004) Cloning zebrafish by nuclear transfer. Meth Cell Biol 77:403–411

    Article  CAS  Google Scholar 

  • Kaftanovskaya E, Motosugi N, Kinoshita M, Ozato K, Wakamatsu Y (2007) Ploidy mosaicism in well-developed nuclear transplants produced by transfer of adult somatic cell nuclei to nonenucleated eggs of medaka (Oryzias latipes). Dev Growth Differ 49:691–698

    Article  PubMed  Google Scholar 

  • Lamche G, Meier M, Suter M, Burkhardt-Holm P (1998) Primary culture of dispersed skin epidermal cells of rainbow trout Oncorhyncus mykiss Walbaum. Cell Mol Life Sci 54:1042–1051

    Article  PubMed  CAS  Google Scholar 

  • Le Bail PY, Depince A, Chenais N, Mahe S, Maisse G, Labbe C (2010) Optimization of somatic cell injection in the perspective of nuclear transfer in goldfish. BMC Dev Biol 10:64

    Article  PubMed  Google Scholar 

  • Lee KY, Huang H, Ju B, Yang Z, Lin S (2002) Cloned zebrafish by nuclear transfer from long-term-cultured cells. Nat Biotechnol 20:795–799

    PubMed  CAS  Google Scholar 

  • Liu TM, Yu XM, Ye YZ, Zhou JF, Wang ZW, Tong JG, Wu CJ (2002) Factors affecting the efficiency of somatic cell nuclear transplantation in the fish embryo. J Exp Zool 293:719–725

    Article  PubMed  Google Scholar 

  • Mauger PE, Le Bail PY, Labbe C (2006) Cryobanking of fish somatic cells: optimizations of fin explant culture and fin cell cryopreservation. Comp Biochem Physiol B Biochem Mol Biol 144:29–37

    Article  PubMed  Google Scholar 

  • Mauger PE, Labbe C, Bobe J, Cauty C, Leguen I, Baffet G, Le Bail PY (2009) Characterization of goldfish fin cells in culture: some evidence of an epithelial cell profile. Comp Biochem Physiol B Biochem Mol Biol 152:205–215

    Article  PubMed  Google Scholar 

  • McGrath J, Solter D (1983) Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science 220:1300–1302

    Article  PubMed  CAS  Google Scholar 

  • Moritz C, Labbe C (2008) Cryopreservation of goldfish fins and optimization for field scale cryobanking. Cryobiology 56:181–188

    Article  PubMed  CAS  Google Scholar 

  • Neyfakh AA (1999) Nucleo-cytoplasmic incompatibility of androgenetic hybrids in sturgeons. J Appl Ichthyol 15:318–319

    Article  Google Scholar 

  • Niwa K, Ladygina T, Kinoshita M, Ozato K, Wakamatsu Y (1999) Transplantation of blastula nuclei to non-enucleated eggs in the medaka, Oryzias latipes. Dev Growth Differ 41:163–172

    Article  PubMed  CAS  Google Scholar 

  • Pei DS, Sun YH, Chen SP, Wang YP, Hu W, Zhu ZY (2007) Identification of differentially expressed genes from the cross-subfamily cloned embryos derived from zebrafish nuclei and rare minnow enucleated eggs. Theriogenology 68:1282–1291

    Article  PubMed  CAS  Google Scholar 

  • Pei DS, Sun YH, Chen CH, Chen SP, Wang YP, Hu W, Zhu ZY (2008) Identification and characterization of a novel gene differentially expressed in zebrafish cross-subfamily cloned embryos. BMC Dev Biol 8:29

    Article  PubMed  Google Scholar 

  • Pei DS, Sun YH, Zhu ZY (2009) Identification of a novel gene K23 over-expressed in fish cross-subfamily cloned embryos. Mol Biol Rep 36:1375–1380

    Article  PubMed  CAS  Google Scholar 

  • Robles V, Cabrita E, Herraez MP (2009) Germplasm cryobanking in zebrafish and other aquarium model species. Zebrafish 6:281–293

    Article  PubMed  Google Scholar 

  • Silvestre MA, Saeed AM, Escriba MJ, Garcia-Ximenez F (2002) Vitrification and rapid freezing of rabbit fetal tissues and skin samples from rabbits and pigs. Theriogenology 58:69–76

    Article  PubMed  CAS  Google Scholar 

  • Silvestre MA, Saeed AM, Cervera RP, Escriba MJ, Garcia-Ximenez F (2003) Rabbit and pig ear skin sample cryobanking: effects of storage time and temperature of the whole ear extirpated immediately after death. Theriogenology 59:1469–1477

    Article  PubMed  CAS  Google Scholar 

  • Silvestre MA, Sanchez JP, Gomez EA (2004) Vitrification of goat, sheep, and cattle skin samples from whole ear extirpated after death and maintained at different storage times and temperatures. Cryobiology 49:221–229

    Article  PubMed  CAS  Google Scholar 

  • Siripattarapravat K, Pinmee B, Venta PJ, Chang CC, Cibelli JB (2009) Somatic cell nuclear transfer in zebrafish. Nat Meth 6:733–735

    Article  CAS  Google Scholar 

  • St John JC, Lloyd REI, Bowles EJ, Thomas EC, El Shourbagy S (2004) The consequences of nuclear transfer for mammalian foetal development and offspring survival. A mitochondrial DNA perspective. Reproduction 127:631–641

    Article  PubMed  CAS  Google Scholar 

  • Sun YH, Chen SP, Wang YP, Hu W, Zhu ZY (2005) Cytoplasmic impact on cross-genus cloned fish derived from transgenic common carp (Cyprinus carpio) nuclei and goldfish (Carassius auratus) enucleated eggs. Biol Reprod 72:510–515

    Article  PubMed  CAS  Google Scholar 

  • Tagliavini J, Williot P, Congius L, Chicca M, Lanfredi M, Rossi R, Fontana F (1998) Molecular cytogenetic analysis of the karyotype of the European Atlantic sturgeon, Acipenser sturio. Heredity 83:1–6

    Google Scholar 

  • Tung TC, Tung YYF (1980) Nuclear transplantation in teleosts. I. Hybrid fish from the nucleus of carp and the cytoplasm of crucian. Sci Sin XXIII:518–523

    Google Scholar 

  • Tung TC, Wu SC, Tung YYF, Yen SS, Tu M, Lu TY (1963) Nuclear transplantation in fishes. Sci Sin 14:1244–1245

    Google Scholar 

  • Tung TC, Tung YFY, Luh TY (1965) Transplantation of nuclei between two subfamilies of teleosts (domesticated goldfish Carassius auratus, and Chinese bitterling Rhodeus sinensis). Acta Zool Sin 19:210–212

    Google Scholar 

  • Wakamatsu Y (2008) Novel method for the nuclear transfer of adult somatic cells in medaka fish (Oryzias latipes): use of diploidized eggs as recipients. Dev Growth Differ 50:427–436

    Article  PubMed  CAS  Google Scholar 

  • Wakamatsu Y, Ju B, Pristyaznhyuk I, Niwa K, Ladygina T, Kinoshita M, Araki K, Ozato K (2001) Fertile and diploid nuclear transplants derived from embryonic cells of a small laboratory fish, medaka (Oryzias latipes). Proc Natl Acad Sci USA 98:1071–1076

    Article  PubMed  CAS  Google Scholar 

  • Wang G, LaPatra S, Zeng L, Zhao Z, Lu Y (2003) Establishment, growth, cryopreservation and species of origin identification of three cell lines from white sturgeon, Acipenser transmontanus. Meth Cell Sci 25:211–220

    Article  Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    Article  PubMed  CAS  Google Scholar 

  • Wolf K, Quimby MC (1969) Fish cell and tissue culture. In: Hoar WS, Randall DJ (eds) Fish physiology Vol III. Academic, New York, pp 253–305

    Google Scholar 

  • Yan SY, Lu DY, Du M, Li GS, Lin LT, Jin GQ, Wang H, Yang YQ, Xia DQ, Liu AZ (1984) Nuclear transplantation in teleosts. Hybrid fish from the nucleus of crucian and the cytoplasm of carp. Sci Sin Ser B Chem Biol Agric Med Earth Sci 27:1029–1034

    CAS  Google Scholar 

  • Yan SY, Mao ZR, Yang HY, Tu MA, Li SH, Huang GP, Li GS, Guo L, Jin GQ, He RF (1991) Further investigation on nuclear transplantation in different orders of teleost: the combination of the nucleus of Tilapia (Oreochromis nilotica) and the cytoplasm of Loach (Paramisgurnus dabryanus). Int J Dev Biol 35:429–435

    PubMed  CAS  Google Scholar 

  • Zhou GZ, Gui L, Li ZQ, Yuan XP, Zhang QY (2008) Establishment of a Chinese sturgeon Acipenser sinensis tail-fin cell line and its susceptibility to frog iridovirus. J Fish Biol 73:2058–2067

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study on Acipenser sturio fin culture and cryopreservation was funded by the INRA AIP CRB-Bioressources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Labbe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Labbe, C., Depince, A., Le Bail, PY., Williot, P. (2011). One Alternative to Germ Cells Cryopreservation: Cryobanking of Somatic Cells in Sturgeon. In: Williot, P., Rochard, E., Desse-Berset, N., Kirschbaum, F., Gessner, J. (eds) Biology and Conservation of the European SturgeonAcipenser sturioL. 1758. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20611-5_47

Download citation

Publish with us

Policies and ethics