Skip to main content

The Application of Fusion of Heterogeneous Meta Classifiers to Enhance Protein Fold Prediction Accuracy

  • Conference paper
  • 1079 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6591))

Abstract

Protein fold prediction problem is considered as one of the most challenging tasks for molecular biology and one of the biggest unsolved problems for science. Recently, varieties of classification approaches have been proposed to solve this problem. In this study, a fusion of heterogeneous Meta classifiers namely: LogitBoost, Random Forest, and Rotation Forest is proposed to solve this problem. The proposed approach aims at enhancing the protein fold prediction accuracy by enforcing diversity among its individual members by employing divers and accurate base classifiers. Employed classifiers combined using five different algebraic combiners (combinational policies) namely: Majority voting, Maximum of Probability, Minimum of Probability, Product of Probability, and Average of probability. Our experimental results show that our proposed approach enhances the protein fold prediction accuracy using Ding and Dubchak’s dataset and Dubchak et al.’s feature set better than the previous works found in the literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shi, S.Y.M., Suganthan, P.N., Deb, K.: Multi class protein fold recognition using multi-objective evolutionary algorithms. In: IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, pp. 61–66 (2004)

    Google Scholar 

  2. Dehzangi, A., Khosravi, B.G.: Introducing Novel Physicochemical Based Features to Enhance Protein Fold Prediction Accuracy. In: Proceeding in: IEEE International Conference on Computer Design and Applications, pp. 592–596 (2010)

    Google Scholar 

  3. Ghanty, P., Pal, N.R.: Prediction of Protein Folds: Extraction of New Features, Dimensionality Reduction, and Fusion of Heterogeneous Classifiers. IEEE Transaction on Nanobioscience 8(1), 100–110 (2009)

    Article  Google Scholar 

  4. Lin, K.L., Li, C.Y., Huang, C.D., Chang, H.M., Yang, C.Y., Lin, C.T., Tang, C.Y., Hsu, D.F.: Feature Selection and Combination Criteria for Improving Accuracy in Protein Structure Prediction. IEEE Transactions on Nanobioscience 6(2), 186–196 (2008)

    Article  Google Scholar 

  5. Shen, H.B., Chou, K.C.: Ensemble Classifier for Protein Fold Pattern Recognition. Bioinformatics 22(14), 1717–1722 (2006)

    Article  Google Scholar 

  6. Dehzangi, A., Amnuaisuk, S.P., Ng, K.H.: Investigating the Influence of Combined Features to Classifiers’ Performance: A Comparison Study on a Protein Fold Prediction Problem. In: 6th IEEE International Conference on Information Technology in Asia, pp. 213–217 (2009)

    Google Scholar 

  7. Hashemi, H.B., Shakery, A., Naeini, M.P.: Protein Fold Pattern Recognition Using Bayesian Ensemble of RBF Neural Networks. In: International Conference of Soft Computing and Pattern Recognition SOCPAR, pp. 436–441 (2009)

    Google Scholar 

  8. Kecman, V., Yang, T.: Protein Fold Recognition with Adaptive Local Hyper plane Algorithm. In: 6th Annual IEEE conference on Computational Intelligence in Bioinformatics and Computational Biology, Nashville, Tennessee, USA, pp. 75–78 (2009)

    Google Scholar 

  9. Nanni, L.: Ensemble of classifiers for protein fold recognition. In: New Issues in Neurocomputing: 13th European Symposium on Artificial Neural Networks, pp. 850–853 (2006)

    Google Scholar 

  10. Chen, Y., Zhang, X., Yang, M.Q., Yang, J.Y.: Ensemble of Probabilistic Neural Networks for Protein Fold Recognition. In: 7th IEEE International Conference on Bioinformatics and Bioengineering, pp. 66–70 (2007)

    Google Scholar 

  11. Dehzangi, A., Amnuaisuk, S.P., Dehzangi, O.: Using Random Forest for Protein Fold Prediction Problem: An Empirical Study. Journal of Information Science and Engineering 26(6) (2010)

    Google Scholar 

  12. Dehzangi, A., Amnuaisuk, S.P., Manafi, M., Safa, S.: Using rotation forest for protein fold prediction problem: An empirical study. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds.) EvoBIO 2010. LNCS, vol. 6023, pp. 217–227. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Krishnaraj, Y., Reddy, C.K.: Boosting methods for Protein Fold Recognition: An Empirical Comparison. In: IEEE International Conference on Bioinformatics and Biomedicine, pp. 393–396 (2008)

    Google Scholar 

  14. Lampros, C., Papaloukas, C., Exarchos, K., Fotiadis, D.I., Tsalikakis, D.: Improving the protein fold recognition accuracy of a reduced state-space hidden Markov model. Computers in Biology and Medicine 39(10), 907–914 (2009)

    Article  Google Scholar 

  15. Bologna, G., Appel, R.D.: A comparison study on protein fold recognition. In: Proceedings of the Ninth International Conference on Neural Information Processing, pp. 2492–2496 (2002)

    Google Scholar 

  16. Ding, C., Dubchak, I.: Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 17(4), 349–358 (2001)

    Article  Google Scholar 

  17. Dubchak, I., Muchnik, I., Kim, S.K.: Protein folding class predictor for SCOP: approach based on global descriptors. In: Proceedings in the 5th International Conference on Intelligent Systems for Molecular Biology, pp. 104–107 (1997)

    Google Scholar 

  18. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  19. Breiman, L.: Random Forest. Machine learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  20. Breiman, L.: Bagging Predictors. Machine Learning 24, 123–140 (1996)

    MATH  Google Scholar 

  21. Livingston, F.: Implementation of Breiman’s Random Forest Machine Learning Algorithm, Machine Learning. ECE591Q (2005)

    Google Scholar 

  22. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1) (2009)

    Google Scholar 

  23. Rodríguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: A new classifier ensemble method. IEEE Transactions 28(10), 1619–1630 (2006)

    Google Scholar 

  24. Kuncheva, L.I., Rodríguez, J.J.: An experimental study on rotation forest ensembles. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 459–468. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  25. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  26. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. Wiley, New York (2001)

    MATH  Google Scholar 

  27. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Annals of Statistics 28(2), 337–407 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Freund, Y., Schapier, R.E.: A Short Introduction to Boosting. Journal of Japanese Society for Artificial Intelligence 14(5), 771–780 (1999)

    Google Scholar 

  29. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: SCOP: a structural classification of proteins database for the investigation of sequences and structures. Journal of Molecular Biology 247, 536–540 (1995)

    Google Scholar 

  30. Bauer, E., Kohavi, R.: An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. Machine Learning 36, 105–139 (1999)

    Article  Google Scholar 

  31. Damoulas, T., Girolami, M.A.: Probabilistic multi-class multi-kernel learning: on protein fold recognition and remote homology detection. Bioinformatics 24, 1264–1270 (2008)

    Article  Google Scholar 

  32. Bouchaffra, D., Tan, J.: Protein Fold Recognition using a Structural Hidden Markov Model. In: 18th International Conference on Pattern Recognition, pp. 186–189 (2006)

    Google Scholar 

  33. Shamim, M.T.A., Anwaruddin, M., Nagarajaram, H.A.: Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs. Bioinformatics 23(24), 3320–3327 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dehzangi, A., Foladizadeh, R.H., Aflaki, M., Karamizadeh, S. (2011). The Application of Fusion of Heterogeneous Meta Classifiers to Enhance Protein Fold Prediction Accuracy. In: Nguyen, N.T., Kim, CG., Janiak, A. (eds) Intelligent Information and Database Systems. ACIIDS 2011. Lecture Notes in Computer Science(), vol 6591. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20039-7_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20039-7_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20038-0

  • Online ISBN: 978-3-642-20039-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics