Skip to main content

Algorithms for MDC-Based Multi-locus Phylogeny Inference

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6577))

Abstract

One of the criteria for inferring a species tree from a collection of gene trees, when gene tree incongruence is assumed to be due to incomplete lineage sorting (ILS), is minimize deep coalescence, or MDC. Exact algorithms for inferring the species tree from rooted, binary trees under MDC were recently introduced. Nevertheless, in phylogenetic analyses of biological data sets, estimated gene trees may differ from true gene trees, be incompletely resolved, and not necessarily rooted. In this paper, we propose new MDC formulations for the cases where the gene trees are unrooted/binary, rooted/non-binary, and unrooted/non-binary. Further, we prove structural theorems that allow us to extend the algorithms for the rooted/binary gene tree case to these cases in a straightforward manner. Finally, we study the performance of these methods in coalescent-based computer simulations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dawkins, R.: The Ancestor’s Tale. Houghton Mifflin, New York (2004)

    Google Scholar 

  2. Degnan, J.H., DeGiorgio, M., Bryant, D., Rosenberg, N.A.: Properties of consensus methods for inferring species trees from gene trees. Syst. Biol. 58, 35–54 (2009)

    Article  Google Scholar 

  3. Degnan, J.H., Rosenberg, N.A.: Discordance of species trees with their most likely gene trees. PLoS Genet. 2, 762–768 (2006)

    Article  Google Scholar 

  4. Degnan, J.H., Rosenberg, N.A.: Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24, 332–340 (2009)

    Article  Google Scholar 

  5. Edwards, S.V., Liu, L., Pearl, D.K.: High-resolution species trees without concatenation. PNAS 104, 5936–5941 (2007)

    Article  Google Scholar 

  6. Jukes, T.H., Cantor, C.R.: Evolution of protein molecules. In: Munro, H.N. (ed.) Mammalian Protein Metabolism, pp. 21–132. Academic Press, New York (1969)

    Chapter  Google Scholar 

  7. Kubatko, L.S., Carstens, B.C., Knowles, L.L.: STEM: species tree estimation using maximum likelihood for gene trees under coalescence. Bioinformatics 25(7), 971–973 (2009)

    Article  Google Scholar 

  8. Kuo, C.-H., Wares, J.P., Kissinger, J.C.: The Apicomplexan whole-genome phylogeny: An analysis of incongruence among gene trees. Mol. Biol. Evol. 25(12), 2689–2698 (2008)

    Article  Google Scholar 

  9. Liu, L., Pearl, D.K.: Species trees from gene trees: Reconstructing Bayesian posterior distributions of a species phylogeny using estimated gene tree distributions. Systematic Biology 56(3), 504–514 (2007)

    Article  Google Scholar 

  10. Maddison, W.P.: Gene trees in species trees. Syst. Biol. 46, 523–536 (1997)

    Article  Google Scholar 

  11. Maddison, W.P., Knowles, L.L.: Inferring phylogeny despite incomplete lineage sorting. Systematic Biology 55(1), 21–30 (2006)

    Article  Google Scholar 

  12. Maddison, W.P., Maddison, D.R.: Mesquite: A modular system for evolutionary analysis (2004), version 1.01 http://mesquiteproject.org

  13. Nei, M.: Stochastic errors in DNA evolution and molecular phylogeny. In: Gershowitz, H., Rucknagel, D.L., Tashian, R.E. (eds.) Evolutionary Perspectives and the New Genetics, pp. 133–147. Alan R. Liss, New York (1986)

    Google Scholar 

  14. Pollard, D.A., Iyer, V.N., Moses, A.M., Eisen, M.B.: Widespread discordance of gene trees with species tree in Drosophila: evidence for incomplete lineage sorting. PLoS Genet. 2, 1634–1647 (2006)

    Google Scholar 

  15. Rambaut, A., Grassly, N.C.: Seq-gen: An application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comp. Appl. Biosci. 13, 235–238 (1997)

    Google Scholar 

  16. Robinson, D.R., Foulds, L.R.: Comparison of phylogenetic trees. Math. Biosci. 53, 131–147 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rokas, A., Williams, B.L., King, N., Carroll, S.B.: Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425, 798–804 (2003)

    Article  Google Scholar 

  18. Semple, C., Steel, M.: Phylogenetics. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  19. Syring, J., Willyard, A., Cronn, R., Liston, A.: Evolutionary relationships among Pinus (Pinaceae) subsections inferred from multiple low-copy nuclear loci. American Journal of Botany 92, 2086–2100 (2005)

    Article  Google Scholar 

  20. Tajima, F.: Evolutionary relationship of DNA sequences in finite populations. Genetics 105, 437–460 (1983)

    Google Scholar 

  21. Takahata, N.: Gene genealogy in three related populations: consistency probability between gene and population trees. Genetics 122, 957–966 (1989)

    Google Scholar 

  22. Than, C., Nakhleh, L.: Species tree inference by minimizing deep coalescences. PLoS Computational Biology 5(9), e1000501 (2009)

    Article  MathSciNet  Google Scholar 

  23. Than, C., Nakhleh, L.: Inference of parsimonious species phylogenies from multi-locus data by minimizing deep coalescences. In: Knowles, L.L., Kubatko, L.S. (eds.) Estimating Species Trees: Practical and Theoretical Aspects, pp. 79–98. Wiley-VCH, Chichester (2010)

    Google Scholar 

  24. Than, C., Ruths, D., Nakhleh, L.: PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships. BMC Bioinformatics 9, 322 (2008)

    Article  Google Scholar 

  25. Than, C., Sugino, R., Innan, H., Nakhleh, L.: Efficient inference of bacterial strain trees from genome-scale multi-locus data. Bioinformatics 24, i123–i131 (2008); Proceedings of the 16th Annual International Conference on Intelligent Systems for Molecular Biology (ISMB 2008)

    Article  Google Scholar 

  26. Wu, C.-I.: Inferences of species phylogeny in relation to segregation of ancient polymorphisms. Genetics 127, 429–435 (1991)

    Google Scholar 

  27. Wu, C.-I.: Reply to Richard R. Hudson. Genetics 131, 513 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, Y., Warnow, T., Nakhleh, L. (2011). Algorithms for MDC-Based Multi-locus Phylogeny Inference. In: Bafna, V., Sahinalp, S.C. (eds) Research in Computational Molecular Biology. RECOMB 2011. Lecture Notes in Computer Science(), vol 6577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20036-6_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20036-6_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20035-9

  • Online ISBN: 978-3-642-20036-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics