Skip to main content

Comparison of Structural Changes upon Heating of Zorite and Na-ETS-4 by In Situ Synchrotron Powder Diffraction

  • Chapter
  • First Online:
Minerals as Advanced Materials II

Abstract

Zorite is a microporous titanosilicate, with ideal chemical formula Na6Ti5Si12O36.11H2O, reported for the first time in the Lovozero massif by (Mer’kov et al. 1973). Sandomirskii and Belov (1979), while recognizing the OD character of zorite, solved its superposition (family) structure in the space group Cmmm based on a unit cell with a=23.241Å, b=7.238Å and c=6.955Å. The same authors inferred a likely doubling of b and c parameters, based on precession photographs, and suggested several models for the possible OD maximum degree of order (MDO) polymorphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Braunbarth CM, Hillhouse HW, Nair S, Tsapatsis M (2000) Structure of strontium ion-exchanged ETS-4 microporous molecular sieves. Chem Mater 12:1857–1865

    Article  Google Scholar 

  • Cruciani G, De Luca P, Nastro A, Pattison P (1998) Rietveld refinement of the zorite structure of ETS-4 molecular sieve. Micropor Mesopor Mat 21:143–153

    Article  Google Scholar 

  • Cruciani G, Gualtieri A (1999) Dehydration dynamics of analcime by in situ synchrotron powder diffraction. Am Mineral 84:112–119

    Google Scholar 

  • Cruciani G (2006) Zeolites upon heating: factors governing their thermal stability and structural changes. J Phys Chem Solids 67:1973–1994

    Article  Google Scholar 

  • Kuznicki SM, Bell VA, Nair S, Hillhouse HW, Jacubunas RM, Braunbarth CM, Toby MH, Tsapatsis M (2001) A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules. Nature 412:720–724

    Article  Google Scholar 

  • Kuzniki SM (1989) US Patent 4:853–202

    Google Scholar 

  • Kuzniki SM (1990) US Patent 4:938–989

    Google Scholar 

  • Kuzniki SM (2000) US Patent 6:068–682

    Google Scholar 

  • Kuzniki SM (2002) US Patent 6:340–433

    Google Scholar 

  • Kuzniki SM (2003) US Patent 6:517–611

    Google Scholar 

  • Larson AC, Von Dreele RB (1994) General structure analysis system (GSAS), Los Alamos National Laboratory Report LAUR-86–748

    Google Scholar 

  • Martucci A, Sacerdoti M, Cruciani G, Dalconi MC (2003) In situ time resolved synchrotron powder diffraction study of mordenite. Eur J Mineral 15:485–493

    Article  Google Scholar 

  • Men'shikov YuP, Krivovichev SV, Pakhomovsky YaA, Yakovenchuk VN, Ivanyuk GYu, Mikhailova YuA, Armbruster T, Selivanova EA (2006) Chivruaiite, Ca4Ti5[(Si6O17)2|O4(OH)]. 14H2O, a new mineral from hydrothermalites of Khibiny and Lovozero alkaline massifs, and its relations with zorite. Am Mineral 9l:922–928

    Article  Google Scholar 

  • Mer’kov AN, Bussen IV, Goiko EA, Kul’chitskaya EA, Men’shikov YuP, Nedorezova AP (1973) Raite and zorite – new minerals from the Lovozero Tundra. Zap VMO 102(1):54–62 (in Russian)

    Google Scholar 

  • Naderi M, Anderson MW (1996) Phase transformation of microporous titanosilicate ETS-4 into narsarsukite. Zeolites 17:437–443

    Article  Google Scholar 

  • Nair S, Jeong HK, Chandrasekaran A, Braunbarth CM, Tsapatsis M, Kuznicki SM (2001a) Synthesis and structure determination of ETS-4 single crystals. Chem Mater 13:4247–4254

    Article  Google Scholar 

  • Nair S, Tsapatsis M, Toby BH, Kuznicki SM (2001b) A study of heat-treatment induced framework contraction in strontium-ETS-4 by powder neutron diffraction and vibrational spectroscopy. J Am Chem Soc 123:12781–12790

    Article  Google Scholar 

  • Philippou A, Anderson MW (1996) Structural investigation of ETS-4. Zeolites 16:98–107

    Article  Google Scholar 

  • Rocha J, Anderson MW (2000) Microporous titanosilicates and other novel mixed octahedral-tetrahedral framework oxides. Eur J Inorg Chem 5:801–818

    Article  Google Scholar 

  • Sandomirskii PA, Belov NV (1979) The OD structure of zorite. Sov Phys Crystallogr 24:686–693, Kristallographiya 24:1198–1210

    Google Scholar 

  • Spiridonova DV, Britvin SN, Krivovichev SV, Yakovenchuk VN, Armbruster T (2008) Tl-exchange in zorite and ETS-4. In: Krivovichev SV (ed) Minerals as advanced materials I. Springer, Berlin, pp 65–69

    Chapter  Google Scholar 

  • Spiridonova DV, Britvin SN, Krivovichev SV, Yakovenchuk VN (2010) Crystal chemistry of ion-exchanged forms of zorite, a natural analogue of the ETS-4 material. In: Minerals as advanced materials II, Kirovsk, Kola Peninsula (Russia) 19–25 July 2010, Book of Abstracts 23–24

    Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213

    Article  Google Scholar 

  • Usseglio S, Calza P, Damin A, Minero C, Bordiga S, Lamberti C, Pelizzetti E, Zecchina A (2006) Tailoring the selectivity of Ti-based photocatalysts (TiO2 and microporous ETS-10 and ETS-4) by playing with surface morphology and electronic structure. Chem Mater 18:3412–3424

    Article  Google Scholar 

  • Zubkova NV, Pushcharovsky DYu, Giester G, Pekov IV, Turchkova AG, Chukanov NV, Tillmanns E (2005) Crystal structures of K- and Cs-exchanged forms of zorite. Crystallogr Rep 50:367–373

    Article  Google Scholar 

  • Zubkova NV, Pushcharovsky DYu, Giester G, Pekov IV, Turchkova AG, Tillmanns E, Chukanov NV (2006) Crystal structure of Pb-exchanged form of zorite. Crystallogr Rep 51:379–382

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to Stefano Zanardi (ENI S.p.A.) for the preliminary data analysis he performed at the University of Ferrara. The public beamtime programme of ESRF is acknowledged for granting access to synchrotron radiation. We thank the staff at GILDA for the help during time-resolved experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Cruciani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sacerdoti, M., Cruciani, G. (2011). Comparison of Structural Changes upon Heating of Zorite and Na-ETS-4 by In Situ Synchrotron Powder Diffraction. In: Krivovichev, S. (eds) Minerals as Advanced Materials II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20018-2_18

Download citation

Publish with us

Policies and ethics