Skip to main content

Molecular Lipophilicity: A Predominant Descriptor for QSAR

  • Chapter
  • First Online:
Chemogenomics and Chemical Genetics
  • 1224 Accesses

Abstract

The discovery of a new medicine is a complex and costly process, in which the role of chance and fortuitous observation is often predominant. Substantial effort has been afforded to rationalise the discovery process as much as possible. The methodologies relevant to rational drug design (according to international terminology) are today omnipresent as much in academic research centres as in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ANFINSEN C., REDFIELD R. (1956) Protein structure in relation to function and biosynthesis. Adv. Protein Chem. 48: 1-100

    Article  Google Scholar 

  • AUDRY E., DUBOST J.P., COLLETER J.C., DALLET P. (1986) Le potentiel de lipophilie molĂ©culaire, nouvelle mĂ©thode d’approche des relations structure-activitĂ©. Eur. J. Med. Chem. 21: 71-72

    CAS  Google Scholar 

  • BROTO P., MOREAU G., VANDYCKE C. (1984) Molecular structures: perception, autocorrelation descriptor and SAR studies. Eur. J. Med. Chem. 19: 71-78

    CAS  Google Scholar 

  • CONNOLLY M.L. (1985) Computation of molecular volume. J. Am. Chem. Soc. 107: 1118-1124

    Article  CAS  Google Scholar 

  • FUJITA T., HANSCH C. (1967) Analysis of the structure-activity relationship of the sulfonamide drugs using substituent constants. J. Med. Chem. 10: 991-1000

    Article  CAS  Google Scholar 

  • GRASSY G., CALAS B., YASRI A., LAHANA R., WOO J., IYER S., KACZOREK M., FLOC’H R., BUELOW R. (1998) Computer-assisted rational design of immunosuppressive compounds. Nat. Biotechnol. 16: 748-752

    Article  CAS  Google Scholar 

  • HANSCH C., LIEN E.J., HELMER F. (1968) Structure-activity correlations in the metabolism of drugs. Arch. Biochem. Biophys. 128: 319-330

    Article  CAS  Google Scholar 

  • HANSCH C., MALONEY P.P., FUJITA T., MUIR R.M. (1962) Correlation of Biological Activity of Phenoxyacetic Acids with Hammett Substituent Constants and Partition Coefficients. Nature 194: 178-180

    Article  CAS  Google Scholar 

  • HANSCH C., MUIR R.M. (1961) Electronic effect of substituents on the activity of phenoxyacetic acids. In Plant growth regulation, Iowa State University Press: 431

    Google Scholar 

  • HANSCH C., MUIR R.M. (1951) Relationship between structure and activity in the substituted benzoic and phenoxyacetic acids. Plant Physiol. 26: 369-374

    Article  Google Scholar 

  • KAMLET M., DOHERTY R., ABBOUD, J.L., ABRAHAM M., TAFT R. (1986) Linear solvation energy relationships: 36. molecular properties governing solubilities of organic nonelectrolytes in water. J. Pharm. Sci. 75: 338-349

    Article  CAS  Google Scholar 

  • KIER L.B., HALL L.H., MURRAY W.J., RANDIC M. (1975) Molecular connectivity. I: Relationship to nonspecific local anesthesia. J. Pharm. Sci. 64: 1971-1974

    Article  CAS  Google Scholar 

  • MEYER H.H. (1899) Theorie der Alkoholnarkose. Arch. Exp. Pathol. Pharmakol. 42: 109-118

    Article  Google Scholar 

  • MEYER H.H. (1901) Zur Theorie der Alkoholnarkose. III. Der Einfluss wechselender Temperatur auf Wikungs-starke and Teilungs Koefficient der Nalkolicka. Arch. Exp. Pathol. Pharmakol. 154: 338-346

    Google Scholar 

  • OVERTON C.E. (1901) Studien uber Narkose, zugleich ein Beitrag zur allgemeinen Pharmakologie. Fisher, Jena, Allemagne

    Google Scholar 

  • REKKER R.F. (1977) The hydrophobic fragment constant. Elsevier, New York, USA

    Google Scholar 

  • VAN DE WATERBEEMD H., TESTA B., CARRUPT P.A., TAYAR N. (1989) Multivariate data analyses of QSAR parameters. Prog. Clin. Biol. Res. 291: 123-126

    CAS  Google Scholar 

  • WILSON L.Y., FAMINI G.R. (1991) Using theoretical descriptors in quantitative structureactivity relationships: some toxicological indices. J. Med. Chem. 34: 1668-1674

    Article  CAS  Google Scholar 

  • YALKOWSKY S.H., VALVANI S.C. (1980) Solubility and partitioning. I: solubility of nonelectrolytes in water. J Pharm. Sci. 69: 912-922

    Article  CAS  Google Scholar 

  • YOUNG R.C., MITCHELL R.C., BROWN T.H., GANELLIN C.R., GRIFFITHS R., JONES M., RANA K.K., SAUNDERS D., SMITH I.R., SORE N.E. (1988) Development of a new physicochemical model for brain penetration and its application to the design of centrally acting H2 receptor histamine antagonists. J. Med. Chem. 31: 656-671

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grassy, G., Chavanieu, A. (2011). Molecular Lipophilicity: A Predominant Descriptor for QSAR. In: MARECHAL, E., Roy, S., Lafanechère, L. (eds) Chemogenomics and Chemical Genetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19615-7_12

Download citation

Publish with us

Policies and ethics