Skip to main content

Abstract

This chapter describes a selection of advanced optical components including the underlying physical principles, production techniques and already existing or possible future applications.

Several of these optical elements, in particular variable lenses and photonic crystals, may replace conventional optical systems once their potential for applications has been fully explored. Other components such as high-quality optical fibres, though well established and used worldwide, still undergo a rapid further improvement and integration in communication systems.

Besides increased quality and versatility, a driving force and essential aspect in the development of optical components in general is low cost and mass production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1-D:

one-dimensional

2-D:

two-dimensional

AFM:

atomic force microscope

AOM:

acoustooptic modulator

AR:

antireflection

ATR:

attenuated total reflection

BCML:

block copolymer micelle nanolithography

BZ:

Brillouin zone

CCD:

charge-coupled device

CCW:

coupled cavity waveguide

CD:

compact disc

CDF:

channel dropping filter

CGH:

computer generated hologram

COC:

cyclic olefin copolymer

COP:

cyclic olefin polymer

CVD:

chemical vapor deposition

DBR:

distributed Bragg reflector

DFB:

distributed feedback

DFG:

difference-frequency generation

DOE:

diffractive optical element

DOM:

dissolved organic matter

DOS:

density of states

DUV:

deep ultraviolet

DWDM:

dense wavelength division multiplexed

EFS:

equi-frequency surface

EMT:

effective-medium theory

EOM:

electrooptic modulator

EWOD:

electrowetting on dielectrics

FDTD:

finite-difference time domain

FZP:

Fresnel zone plate

GRIN:

gradient index

GVD:

group velocity dispersion

HF:

high frequency

HMD:

head-mounted display

ICP:

inductively coupled plasma

IFTA:

iterative Fourier-transform algorithm

IL:

interference lithography

IR:

infrared

ITO:

indium–tin oxide

LCoS:

liquid crystal on silicon

LD:

laser diode

LED:

light-emitting diode

LH:

left-handed

LPE:

liquid-phase epitaxy

MEMS:

microelectromechanical system

MPC:

metallic photonic crystal

NA:

numerical aperture

NCPM:

noncritical phase matching

NIM:

nearly index-matched

NLO:

nonlinear optical

NOP:

nonlinear optical phenomenon

NPC:

nonlinear photonic crystal

OCT:

optical coherence tomography

OK:

optical Kerr

OP:

oriented-patterned

OPG:

optical parametric generation

OPL:

optical path length

OPO:

optical parametric oscillator

OPP:

optical parametric process

PB:

photonic band

PBG:

photonic band gap

PBS:

photonic band structure

PBS:

polarizing beam splitter

PC:

photonic crystal

PDMS:

polydimethylsiloxane

PM:

polarization-maintaining

PMMA:

polymethylmethacrylate

PPKTP:

periodically poled potassium titanyl phosphate

PPLN:

periodically poled lithium niobate

PS:

polystyrene

PSF:

point spread function

QC:

quasicrystals

QD:

quantum dot

QED:

quantum electrodynamics

QPM:

quasi-phase matching

QW:

quantum well

RCWA:

rigorous coupled wave analysis

RGB:

red, green and blue

RIE:

reactive-ion etching

RS:

Raman scattering

SE:

spontaneous emission

SEM:

scanning electron microscope

SFG:

sum-frequency generation

SHG:

second-harmonic generation

SMF:

single-mode fiber

SMZ:

symmetrical Mach–Zehnder

SNOM:

scanning near-field optical microscope

SNR:

signal-to-noise ratio

SOI:

silicon-on-insulator

SP:

Smith–Purcell

SPM:

self-phase modulation

SPP:

surface plasmon polariton

SRS:

stimulated Raman scattering

TE:

transverse electric

THG:

third-harmonic generation

TM:

transition metal

TM:

transversal magnetic

TM:

transverse magnetic

TO:

thermooptic

TO:

topology optimization

UV:

ultraviolet

WD:

working distance

WDM:

wavelength division multiplexing

WG:

waveguide

WGP:

wire-grid polarizer

YAG:

yttrium aluminium garnet

fcc:

face-centered cubic

References

  1. M.F. Land, D.E. Nilsson: Animal Eyes (Oxford Univ. Press, New York 2002)

    Google Scholar 

  2. J. Aizenberg, A. Tkachenko, S. Weiner, L. Addadi, G. Hendler: Calcitic microlenses as a part of the photoreceptor system in brittlestars, Nature 409, 36–37 (2001)

    Article  Google Scholar 

  3. Z.D. Popovic, R.A. Sprague, G.A.N. Conell: Technique for the monolithique fabrication of microlens arrays, Appl. Opt. 27, 1281–1284 (1988)

    Article  ADS  Google Scholar 

  4. A.Y. Feldblum, C.R. Nijander, W.P. Townsend, C.M. Mayer-Costa: Performance and measurement of refractive microlens arrays, Proc. SPIE 1544, 200 (1991)

    Article  ADS  Google Scholar 

  5. M.C. Hutley: Refractive lenslet arrays. In: Micro-Optics Elements, Systems and Applications, ed. by H.P. Herzig (Taylor Francis, New York 1997) pp. 127–152

    Google Scholar 

  6. S. Sinzinger, J. Jahns: Microoptics, 2nd edn. (Wiley VCH, Weinheim 2003)

    Book  Google Scholar 

  7. M.T. Gale: Direct writing of continuous-relief micro-optics. In: Micro-Optics Elements, Systems and Applications, ed. by H.P. Herzig (Taylor Francis, New York 1997) pp. 87–126

    Google Scholar 

  8. M.B. Stern, T.R. Jay: Dry etching of coherent refractive microlens arrays, Opt. Eng. 33, 3547–3551 (1994)

    Article  ADS  Google Scholar 

  9. P. Michaloski: Illuminators for microlithography. In: Laser Beam Shaping Applications, ed. by F.M. Dickey, S.C. Holswade, D.L. Shealy (Taylor Francis, New York 2006) pp. 1–54

    Google Scholar 

  10. K.H. Lee, D.H. Kim, J.S. Kim, S.-S. Choi, H.B. Chung, H.Y. Yoo, B.W. Kim: Design of illumination system for ArF excimer laser step-and-scanner, Proc. SPIE 3334, 997–1004 (1998)

    Article  ADS  Google Scholar 

  11. L. Erdmann, M. Burkhardt, R. Brunner: Coherence management for microlens laser beam homogenizer, Proc. SPIE 4775, 145–154 (2002)

    Article  ADS  Google Scholar 

  12. R.N. Gast: Excimer laser photorefractive surgery of the cornea, Proc. SPIE 3343, 212–220 (1998)

    Article  ADS  Google Scholar 

  13. J.P. Sercel, M. von Dadelszen: Practical UV excimer laser image system illuminators. In: Laser Beam Shaping Applications, ed. by F.M. Dickey, S.C. Holswade, D.L. Shealy (Taylor Francis, New York 2006) pp. 113–156

    Google Scholar 

  14. T. Henning, L. Unnebrink, M. Scholl: UV laser beam shaping by multifaceted beam integrators: fundamental principles and advanced design concepts, Proc. SPIE 2703, 62–73 (1996)

    Article  ADS  Google Scholar 

  15. Y. Li, E. Wolf: Three-dimensional intensity distribution near the focus in systems of different Fresnel numbers, J. Opt. Soc. Am. A 1, 801–808 (1984)

    Article  ADS  Google Scholar 

  16. P. Dainesi, J. Ihlemann, P. Simon: Optimization of a beam delivery system for a short-pulse KrF laser used for material ablation, Appl. Opt. 36, 7080–7085 (1997)

    Article  ADS  Google Scholar 

  17. T. Sandström: Homogenization of a spatially coherent radiation beam and printing and inspection, respectively, of a pattern on a workpiece, WO-Patent 03/023833 (2003)

    Google Scholar 

  18. M. Burkhardt, R. Brunner: Functional integrated optical elements for beam shaping with coherence scrambling property, realized by interference lithography, Appl. Opt. 46(28), 7061–7067 (2007)

    Article  ADS  Google Scholar 

  19. D.M. Brown, F.M. Dickey, L.S. Weichmann: Multi-aperture beam integration systems. In: Laser Beam Shaping, ed. by F.M. Dickey, S.C. Holswade (Marcel Dekker, New York 2000) pp. 273–311

    Google Scholar 

  20. F.M. Dickey, S.C. Holswade: Beam shaping: A review. In: Laser Beam Shaping Applications, ed. by F.M. Dickey, S.C. Holswade, D.L. Shealy (Taylor Francis, New York 2006) pp. 269–306

    Google Scholar 

  21. J.C. Dainty: Adaptive optics. In: Optical Imaging and Microscopy, ed. by P. Török, F.-J. Kao (Springer, Berlin Heidelberg, 2007) pp. 307–327, 2nd edn.

    Google Scholar 

  22. L. Gilles, B.L. Ellerbroeck: Real-time turbulence profiling with a pair of laser guide star Shack–Hartmann wave-front sensors for wide-field adaptive optics systems on large to extremely large telescopes, J. Opt. Soc. Am. A 27(11), 76–83 (2010)

    Article  ADS  Google Scholar 

  23. F. Shi, G. Chanan, C. Ohara, M. Troy, D.C. Redding: Experimental verification of dispersed fringe sensing as a segment phasing technique using the Keck telescope, Appl. Opt. 43(23), 4474–4481 (2004)

    Article  ADS  Google Scholar 

  24. R. Conan, O. Lardiere, G. Herriot, C. Bradley, K. Jackson: Experimental assessment of the matched filter for laser guide star wave-front sensing, Appl. Opt. 48(6), 1198–1211 (2009)

    Article  ADS  Google Scholar 

  25. P.M. Prieto, F. Fargas-Martin, S. Goelz, P. Artal: Analysis of the performance of the Hartmann–Shack sensor in the human eye, J. Opt. Soc. Am. A 17(8), 1388–1398 (2000)

    Article  ADS  Google Scholar 

  26. J.W. Cha, P.T.C. So: A Shack-Hartmann: Wave-front sensor based adaptive optics system for multiphoton microscopy, Biomedical Optics (BIOMED) 2008 paper: BMD52, OSA Technical Digest (CD) (Opt. Soc. Am., Washington 2008)

    Google Scholar 

  27. M.D. Missig, G.M. Morris: Diffractive optics applied to eyepiece design, Appl. Opt. 34, 2452–2461 (1995)

    Article  ADS  Google Scholar 

  28. W. Knapp, G. Blough, K. Khajurival, R. Michaels, B. Tatian, B. Volk: Optical design comparison of 60° eyepieces: one with a diffractive surface and one with aspherics, Appl. Opt. 34, 4756–4760 (1997)

    Article  ADS  Google Scholar 

  29. Z.-Q. Wang, H.-J. Zhang, R.-L. Fu, G.-G. Mu, Z.-W. Lu, C.M. Cartwright, W.A. Gillespie: Hybrid diffractive refractive ultra-wide-angle eyepieces, Optik 113, 159–162 (2002)

    Article  ADS  Google Scholar 

  30. C.G. Blough, M.J. Hoppe, D.R. Hand, W.J. Peck: Achromatic eyepieces using acrylic diffractive lenses, Proc. SPIE 2600, 93–99 (1995)

    Article  ADS  Google Scholar 

  31. Z. Yun, Y.L. Lam, Y. Zhou, X. Yuan, L. Zhao, J. Liu: Eyepiece design with refractive–diffractive hybrid elements, Proc. SPIE 4093, 474–480 (2000)

    Article  ADS  Google Scholar 

  32. G. De Vos, G. Brandt: Use of holographic optical elements in HMDs, Proc. SPIE 1290, 70–80 (1990)

    Article  ADS  Google Scholar 

  33. J.A. Cox, T.A. Fritz, T. Werner: Application and demonstration of diffractive optics for head-mounted displays, Proc. SPIE 2218, 32–40 (1994)

    Article  ADS  Google Scholar 

  34. J.P. Rolland, M.W. Krueger, A.A. Goon: Dynamic focusing in head-mounted displays, Proc. SPIE 3639, 463–470 (1999)

    Article  ADS  Google Scholar 

  35. T. Nakai, H. Ogawa: Research on multi-layer diffractive optical elements and their application to camera lenses, Diffractive Optics and Micro-Optics, Techn. Dig. (Optical Society of America, Washington, 2002) pp. 5–7, (postconference edition)

    Google Scholar 

  36. R. Brunner, R. Steiner, K. Rudolf, H.-J. Dobschal: Diffractive-refractive hybrid microscope objective for 193 nm inspection systems, Proc. SPIE 5177, 9–15 (2003)

    Article  ADS  Google Scholar 

  37. R. Brunner, A. Menck, R. Steiner, G. Buchda, S. Weissenberg, U. Horn, A.M. Zibold: Immersion mask inspection with hybrid-microscopic systems at 193 nm, Proc. SPIE 5567, 887–893 (2004)

    Article  ADS  Google Scholar 

  38. R. Brunner, M. Burkhardt, A. Pesch, O. Sandfuchs, M. Ferstl, S.C. Hohng, J.O. White: Diffraction based solid immersion lens, J. Opt. Soc. Am. A 21(7), 1186–1191 (2004)

    Article  ADS  Google Scholar 

  39. R.A. Hyde: Eyeglass. 1. Very large aperture diffractive telescopes, Appl. Opt. 38(19), 4198–4212 (1999)

    Article  ADS  Google Scholar 

  40. I.M. Barton, J.A. Britten, S.N. Dixit, L.J. Summers, I.M. Thomas, M.C. Rushford, K. Lu, R.A. Hyde, M.D. Perry: Fabrication of large-aperture lightweight diffractive lenses for use in space, Appl. Opt. 40(4), 447–451 (2001)

    Article  ADS  Google Scholar 

  41. D. Attwood: Soft X-ray and Extreme Ultraviolet Radiation – Principles and Applications (Cambridge Univ. Press, Cambridge 1999)

    Google Scholar 

  42. J. Nowak, J. Masajada: Hybrid apochromatic lens, Opt. Appl. 30(2/3), 271–275 (2000)

    Google Scholar 

  43. D.A. Buralli: Optical performance of holographic kinoforms, Appl. Opt. 28, 976–983 (1989)

    Article  ADS  Google Scholar 

  44. C. Londono, P.P. Clark: Modeling diffraction efficiency effects when designing hybrid diffractive lens systems, Appl. Opt. 31, 2248–2251 (1992)

    Article  ADS  Google Scholar 

  45. S.M. Ebstein: Nearly index-matched optics for aspherical, diffractive, and achromatic-phase diffractive elements, Opt. Lett. 21, 1454–1456 (1996)

    Article  ADS  Google Scholar 

  46. Y. Arieli, S. Noach, S. Ozeri, N. Eisenberg: Design of diffractive optical elements for multiple wavelengths, Appl. Opt. 37, 6174–6177 (1998)

    Article  ADS  Google Scholar 

  47. Y. Arieli, S. Ozeri, T. Eisenberg, S. Noach: Design of diffractive optical elements for wide spectral bandwidth, Opt. Lett. 23, 823–824 (1998)

    Article  ADS  Google Scholar 

  48. T. Nakai: Diffractive optical element and photographic optical system having the same, European Patent Application EP 1014150 A2 (1999)

    Google Scholar 

  49. H.P. Herzig, A. Schilling: Optical systems – design using microoptics. In: Encyclopedia of Optical Engineering, Vol. 2, ed. by R.G. Driggers (Marcel Dekker, New York 2003) pp. 1830–1842

    Google Scholar 

  50. T. Nakai, H. Ogawa: Research on multi-layer diffractive optical elementsand their applications to photographiclenses, 3rd Int. Conf. Optics–Photonics Design Fabrication, Tokyo 2002, ed. by T. Murakami (Optical Society of Japan, Tokio 2002) pp. 61–62

    Google Scholar 

  51. T.H. Jamieson: Thermal effects in optical systems, Opt. Eng. 20, 156–160 (1981)

    Google Scholar 

  52. G.P. Behrmann, J.P. Bowen: Influence of temperature on diffractive lens performance, Appl. Opt. 32(14), 2483–2489 (1993)

    Article  ADS  Google Scholar 

  53. J. Jahns, Y.H. Lee, C.A. Burrus, J. Jewell: Optical interconnects using top-surface-emitting microlasers and planar optics, Appl. Opt. 31, 592–597 (1992)

    Article  ADS  Google Scholar 

  54. C. Londono, W.T. Plummer, P.P. Clark: Athermalization of a single-component lens with diffractive optics, Appl. Opt. 32, 2295–2302 (1993)

    Article  ADS  Google Scholar 

  55. G.P. Behrmann, J.N. Mait: Hybrid (refractive/diffractive) optics. In: Micro-optics: Elements, Systems and Application, ed. by H.P. Herzig (Taylor Francis, London 1997) pp. 259–292

    Google Scholar 

  56. G. Khanarian: Optical properties of cyclic olefin copolymers, Opt. Eng. 40(6), 1024–1029 (2001)

    Article  ADS  Google Scholar 

  57. Nippon Zeon: Zeonex Brochure (Nippon Zeon Co., Tokyo 1998)

    Google Scholar 

  58. B. Kress, P. Meyrueis: Digital Diffractive Optics: An Introduction to Planar Diffractive Optics and Related Technology (Wiley, New York 2000)

    Google Scholar 

  59. D.C. OʼShea, T.J. Suleski, A.D. Kathman, D.W. Prather: Diffractive Optics: Design, Fabrication, and Test, SPIE Vol. TT62 (SPIE, Bellingham 2003)

    Google Scholar 

  60. D. Schreier, W. Hase: Synthetische Holografie (Physik-Verlag, Weinheim 1984), in German

    Google Scholar 

  61. J. Turunen, F. Wyrowski: Introduction to Diffractive Optics (Akademie Verlag, Berlin 1997)

    Google Scholar 

  62. M. Hagemann, M. Kluge, E. Pawlowski, S. Reichel, M. Brinkmann: Design and Optimization Strategies for Diffractive Optical Elements (DOE), EOS Topical Meeting on Diffractive Optics 2010 (EOS 2010)

    Google Scholar 

  63. LightTrans GmbH: LightTrans VirtualLab Userʼs Manual, LightTrans GmbH Jena, available online at www.lighttrans.com (last accessed 22 December 2011)

  64. H. Vogt, R. Biertümpfel, E. Pawlowski: Proc. SPIE 6876, 687617 (2008)

    Article  Google Scholar 

  65. L.H. Cescato, E. Gluch, N. Streibl: Holographic quarterwave plates, Appl. Opt. 29(22), 3286–3290 (1990)

    Article  ADS  Google Scholar 

  66. I. Richter, P.-C. Sun, F. Xu, Y. Fainman: Design considerations of form birefringent microstructures, Appl. Opt. 34(14), 2421–2429 (1995)

    Article  ADS  Google Scholar 

  67. I. Richter, P.-C. Sun, F. Xu, Y. Fainman: Form birefringent microstructures: modeling and design, Proc. SPIE 2404, 69–80 (1995)

    Article  ADS  Google Scholar 

  68. P.B. Clapham, M.C. Hutley: Reduction of lens reflexion by the “moth eye” principle, Nature 244(5414), 281–282 (1973)

    Article  ADS  Google Scholar 

  69. S.J. Wilson, M.C. Hutley: The optical properties of ‘moth eye’ antireflection surfaces, Opt. Acta 29(7), 993–1009 (1982)

    Article  ADS  Google Scholar 

  70. T.K. Gaylord, W.E. Baird, M.G. Moharam: Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface relief gratings, Appl. Opt. 25(24), 4562–4567 (1986)

    Article  ADS  Google Scholar 

  71. D.H. Raguin, G.M. Morris: Antireflection structured surfaces for the infrared spectral region, Appl. Opt. 32(7), 1154–1167 (1993)

    Article  ADS  Google Scholar 

  72. R. Bräuer, O. Bryngdahl: Design of antireflection gratings with approximate and rigorous methods, Appl. Opt. 33(34), 7875–7882 (1994)

    Article  ADS  Google Scholar 

  73. R.-C. Tyan, P.-C. Sun, Y. Fainman: Polarizing beam splitters constructed of form-birefringent multiplayer gratings, Proc. SPIE 2689, 82–89 (1996)

    Article  ADS  Google Scholar 

  74. R.-C. Tyan, A.A. Salvekar, H.-P. Chou, C.-C. Cheng, A. Scherer, P.-C. Sun, F. Xu, Y. Fainman: Design, fabrication, and characterization of form-birefringent multiplayer polarizing beam splitter, J. Opt. Soc. Am. A 14(7), 1627–1636 (1997)

    Article  ADS  Google Scholar 

  75. L. Pajewski, R. Borghi, G. Schettini, F. Frezza, M. Santarsiero: Design of a binary grating with subwavelength features that acts as a polarizing beam splitter, Appl. Opt. 40(32), 5898–5905 (2001)

    Article  ADS  Google Scholar 

  76. L.L. Soares, L. Cescato: Metallized photoresist grating as a polarizing beam splitter, Appl. Opt. 40(32), 5906–5910 (2001)

    Article  ADS  Google Scholar 

  77. P. Lalanne, J. Hazart, P. Chavel, E. Cambril, H. Launois: A transmission polarizing beam splitter grating, J. Opt. A 1, 215–219 (1999)

    Article  ADS  Google Scholar 

  78. H. Haidner, P. Kipfer, W. Stork, N. Streibl: Zero-order gratings used as an artificial distributed index medium, Optik 89(3), 107–112 (1992)

    Google Scholar 

  79. M.W. Farn: Binary gratings with increased efficiency, Appl. Opt. 31(22), 4453–4458 (1992)

    Article  ADS  Google Scholar 

  80. M. Collischon, H. Haidner, P. Kipfer, A. Lang, J.T. Sheridan, J. Schwider, N. Streibl, J. Lindolf: Binary blazed reflection gratings, Appl. Opt. 33(16), 3572–3577 (1994)

    Article  ADS  Google Scholar 

  81. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois: Blazed binary subwavelength gratings with efficiencies larger than those of conventional echelette gratings, Opt. Lett. 23(14), 1081–1083 (1998)

    Article  ADS  Google Scholar 

  82. J.N. Mait, D.W. Prather, M.S. Mirotznik: Binary subwavelength diffractive lens design, Opt. Lett. 23(17), 1343–1345 (1998)

    Article  ADS  Google Scholar 

  83. M. Born, E. Wolf: Principles of Optics, 6th edn. (Pergamon, London 1980)

    Google Scholar 

  84. S.M. Rytov: Electromagnetic properties of a finely stratified medium, Sov. Phys. JETP 2(3), 466–475 (1956)

    Google Scholar 

  85. E.B. Grann, M.G. Moharam, D.A. Pommet: Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings, J. Opt. Soc. Am. A 11(10), 2695–2703 (1994)

    Article  ADS  Google Scholar 

  86. A.R. Parker: 515 million years of structural colors, J. Opt. A 2, R15–R28 (2000)

    Article  ADS  Google Scholar 

  87. E.N. Glytsis, T.K. Gaylord: High-spatial-frequency binary and multilevel stairstep gratings: polarization-selective mirrors and broadband antireflection surfaces, Appl. Opt. 31(22), 4459–4470 (1992)

    Article  ADS  Google Scholar 

  88. D.H. Raguin, G.M. Morris: Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles, Appl. Opt. 32(14), 2582–2598 (1993)

    Article  ADS  Google Scholar 

  89. M.E. Motamedi, W.H. Southwell, W.J. Gunning: Antireflection surfaces in silicon using binary optics technology, Appl. Opt. 31(22), 4371–4376 (1993)

    Article  ADS  Google Scholar 

  90. A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, V. Wittwer: Antireflective submicrometer surface-relief gratings for solar applications, Sol. Energy Mater. Sol. Cells 54, 333–342 (1998)

    Article  Google Scholar 

  91. R. Glass, M. Moeller, J.P. Spatz: Block copolymer micelle nanolithography, Nanotechnology 14, 1153–1160 (2003)

    Article  ADS  Google Scholar 

  92. T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, J.P. Spatz: Biomimetic interfaces for high-performance optics in deep-UV light range, Nano Lett. 8(5), 1429–1433 (2008)

    Article  ADS  Google Scholar 

  93. C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, J.P. Spatz: Tailored antireflective biomimetic nanostructures for UV applications, Nanotechnology 21, 425301 (2010), (6p.)

    Article  ADS  Google Scholar 

  94. R.T. Perkins, D.P. Hansen, E.W. Gardner, J.M. Thorne, A.A. Robbins: Broadband wire grid polarizer for the visible spectrum, US Patent 6122103 (2000)

    Google Scholar 

  95. M. Xu, H.P. Urbach, D.K.G. de Boer, H.J. Cornelissen: Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon, Opt. Express 13(7), 2303–2320 (2005)

    Article  ADS  Google Scholar 

  96. T. Sergan, M. Lavrenzovich, J. Kelly, E. Gardner, D. Hansen: Measurement and modeling of optical performance of wire grids and liquid-crystal displays utilizing grid polarizers, J. Opt. Soc. Am. A 19(9), 1872–1885 (2002)

    Article  ADS  Google Scholar 

  97. P. Yeh: A new optical model for wire grid polarizers, Opt. Commun. 26(3), 289–292 (1978)

    Article  ADS  Google Scholar 

  98. W. Storck, N. Streibl, H. Haidner, P. Kipfer: Artificial distributed-index media fabricated by zero-order gratings, Opt. Lett. 16(24), 1921–1923 (1991)

    Article  ADS  Google Scholar 

  99. H. Haidner, P. Kipfer, T. Sheridan, J. Schwider, N. Streibl, M. Collischon, J. Hutfless, M. März: Diffraction grating with rectangular grooves exceeding 80 % diffraction efficiency, Infrared Phys. 34(5), 467–475 (1993)

    Article  ADS  Google Scholar 

  100. P. Tang, D.J. Towner, T. Hamano, A.L. Meier: Electrooptic modulation up to 40 GHz in a barium titanate thin film waveguide modulator, Opt. Express 12(24), 5962–5967 (2004)

    Article  ADS  Google Scholar 

  101. M. Hufschmid: Winkelmodulation (Fachhochschule, Basel 2002), in German

    Google Scholar 

  102. New Focus: Practical Uses and Applications of Electrooptic Modulators (Bockham Inc., San Jose 2001)

    Google Scholar 

  103. M. Bass: Handbook of Optics, Vol. 2 (McGraw-Hill, New York 1995)

    Google Scholar 

  104. B.E.A. Saleh, M.C. Teich: Fundamentals of Photonics (Wiley, New York 1991)

    Book  Google Scholar 

  105. R.F. Enscoe, R.J. Kocka: Systems and Applications Demands for Wider-Band Beam Modulation Challenge System Designers (Conoptics Inc., Danbury 1981)

    Google Scholar 

  106. A.L. Mikaelian: Self-focusing media with variable index of refraction, Prog. Opt. 17, 281–345 (1980)

    Google Scholar 

  107. K. Iga: Theory for gradient index imaging, Appl. Opt. 19, 1039–1043 (1970)

    Article  ADS  Google Scholar 

  108. H. Hovestädt: Cylindrical glass plates acting like diverging lenses. In: Jena Glass and Its Scientific and Industrial Applications, ed. by I.P. Everett, A. Everett (Macmillan, London 1902) pp. 66–70, Chap. 29

    Google Scholar 

  109. J.C. Maxwell: Solution of problems, Camb. Dublin Math. J. 8, 188 (1854)

    Google Scholar 

  110. K. Iga, S. Misawa: Distributed-index planar microlens and stacked planar optics: a review of progress, Appl. Opt. 25, 3388–3396 (1986)

    Article  ADS  Google Scholar 

  111. R.K. Luneburg: Mathematical Theory of Optics (Univ. California Press, Berkeley 1966), Chap. 27-30, pp. 164–195

    Google Scholar 

  112. S. Doric: Patent WO 96/14595 (1996)

    Google Scholar 

  113. M.V.R.K. Murty: Laminated lens, J. Opt. Soc. Am. 61, 886–894 (1971)

    Article  ADS  Google Scholar 

  114. K. Iga, Y. Kokubun, M. Gikawa: Fundamentals of Microoptics (Academic, New York 1984)

    Google Scholar 

  115. E.W. Marchand: Gradient Index Optics (Academic, New York 1978)

    Google Scholar 

  116. C. Gomez-Reino, M.V. Perez, C. Bao: Gradient-Index Optics (Springer, Berlin, Heidelberg 2002)

    Google Scholar 

  117. K.H. Brenner, W. Singer: Light propagation through microlenses: a new simulation method, Appl. Opt. 32, 4984 (1993)

    Article  ADS  Google Scholar 

  118. S.I. Najafi: Introduction to Glass Integrated Optics (Artech House, New York 1992)

    Google Scholar 

  119. M. Born, E. Wolf: Principles of Optics (Pergamon, Oxford 1980)

    Google Scholar 

  120. A. Sharma, D.V. Kumar, A.K. Ghatak: Tracing rays through graded-index media: a new method, Appl. Opt. 21, 984–987 (1982)

    Article  ADS  Google Scholar 

  121. A. Sharma: Computing optical path length in gradient-index media: a fast and accurate method, Appl. Opt. 24, 4367–4370 (1985)

    Article  ADS  Google Scholar 

  122. M.L. Huggins: The refractive index of silicate glasses as a function of composition, J. Opt. Soc. Am. 30, 420 (1940)

    Article  ADS  Google Scholar 

  123. S.D. Fantone: Refractive index and spectral models for gradient-index materials, Appl. Opt. 22, 432–440 (1983)

    Article  ADS  Google Scholar 

  124. D.P. Ryan-Howard, D.T. Moore: Model for the chromatic properties of gradient-index glass, Appl. Opt. 24, 4356–4366 (1985)

    Article  ADS  Google Scholar 

  125. K. Shingyouchi, S. Konishi: Gradient-index doped silica rod lenses produced by a solgel method, Appl. Opt. 29, 4061–4063 (1990)

    Article  ADS  Google Scholar 

  126. M.A. Pickering, R.L. Taylor, D.T. Moore: Gradient infrared optical material prepared by a chemical vapor deposition process, Appl. Opt. 25, 3364–3372 (1986)

    Article  ADS  Google Scholar 

  127. I. Kitano, K. Koizumi, H. Matsumura, T. Uchida, M. Furukawa: A light-focusing fiber guide prepared by ion-exchange techniques, J. Jpn. Soc. Appl. Phys. Suppl. 39, 63–70 (1970)

    Google Scholar 

  128. S. Ohmi, H. Sakai, Y. Asahara, S. Nakayama, Y. Yoneda, T. Izumitani: Gradient-index rod lens made by a double ion-exchange process, Appl. Opt. 27, 496 (1988)

    Article  ADS  Google Scholar 

  129. R.H. Doremus: Ion exchange in glasses. In: Ion Exchange, ed. by J. Marinski (Marcel Decker, New York 1966)

    Google Scholar 

  130. Y. Ohtsuka, T. Sugano: Studies on the light-focusing plastic rod. 14: GRIN rod of CR-39-trifluoroethyl methacrylate copolymer by a vapor-phase transfer process, Appl. Opt. 22, 413 (1983)

    Article  ADS  Google Scholar 

  131. T.M. Che, J.B. Caldwell, R.M. Mininni: Sol-gel derived gradient index optical materials, Proc. SPIE 1328, 145–159 (1990)

    Article  ADS  Google Scholar 

  132. Y. Koike, H. Hidaka, Y. Ohtsuka: Plastic axial gradient-index lens, Appl. Opt. 24, 4321 (1985)

    Article  ADS  Google Scholar 

  133. P.K. Manhart, T.W. Stuhlinger, K.R. Castle, M.C. Ruda: Gradient refractive index lens elements, US Patent 5617252 (1997)

    Google Scholar 

  134. R.M. Ward, D.N. Pulsifer: Glass preform with deep radial gradient layer and method of manufacturing same, US Patent 5522003 (1996)

    Google Scholar 

  135. B. Messerschmidt, T. Possner, R. Goering: Colorless gradient-index cylindrical lenses with high numerical apertures produced by silver-ion exchange, Appl. Opt. 34, 7825 (1995)

    Article  ADS  Google Scholar 

  136. T. Findakly: Glass waveguides by ion exchange: a review, Opt. Eng. 24, 244–252 (1985)

    Google Scholar 

  137. A. Tervonen, S. Honkanen: Model for waveguide fabrication in glass by two-step ion exchange with ionic masking, Opt. Lett. 13, 71 (1988)

    Article  ADS  Google Scholar 

  138. J.M. Inman, J.L. Bentley, S.N. Houde-Walter: Modeling ion-exchanged glass photonics: the modified quasi-chemical diffusion coefficient, J. Non-Cryst. Solids 191, 209–215 (1995)

    Article  ADS  Google Scholar 

  139. B. Messerschmidt, C.H. Hsieh, B.L. McIntyre, S.N. Houde-Walter: Ionic mobility in an ion exchanged silver–sodium boroaluminosilicate glass for micro-optics applications, J. Non-Cryst. Solids 217, 264–271 (1997)

    Article  ADS  Google Scholar 

  140. N. Haun, D.S. Kindred, D.T. Moore: Index profile control using Li+ for Na+ exchange in aluminosilicate glasses, Appl. Opt. 29, 4056 (1990)

    Article  ADS  Google Scholar 

  141. L.G. Atkinson, D.T. Moore, N.J. Sullo: Imaging capabilities of a long gradient-index rod, Appl. Opt. 21, 1004 (1982)

    Article  ADS  Google Scholar 

  142. D.C. Leiner, R. Prescott: Correction of chromatic aberrations in GRIN endoscopes, Appl. Opt. 22, 383 (1983)

    Article  ADS  Google Scholar 

  143. K. Fujii, S. Ogi, N. Akazawa: Gradient-index rod lens with a high acceptance angle for color use by Na+ for Li+ exchange, Appl. Opt. 33, 8087 (1994)

    Article  ADS  Google Scholar 

  144. S. Yuan, N.A. Riza: General formula for coupling-loss characterization of single-mode fiber collimators by use of gradient-index rod lenses, Appl. Opt. 38, 3214–3222 (1999)

    Article  ADS  Google Scholar 

  145. R.W. Gilsdorf, J.C. Palais: Single-mode fiber coupling efficiency with graded-index rod lenses, Appl. Opt. 33, 3440 (1994)

    Article  ADS  Google Scholar 

  146. Y. Mitsuhashi: SELFOC lenses: Applications in DWDM and optical data links, Proc. SPIE 3666, 246–251 (1999)

    Article  ADS  Google Scholar 

  147. I. Kitano, H. Ueno, M. Toyama: Gradient-index lens for low-loss coupling of a laser diode to single-mode fiber, Appl. Opt. 25, 3336 (1986)

    Article  ADS  Google Scholar 

  148. V. Blümel, B. Messerschmidt: Designs and applications of graded-index fast-axis-collimating lenses to high-power diode lasers, Proc. 10th Microoptics Conference (MOC04), Jena 2004, ed. by Conventus (Elsevier, Amsterdam 2004), F-53

    Google Scholar 

  149. J.M. Stagaman, D.T. Moore: Laser diode to fiber coupling using anamorphic gradient-index lenses, Appl. Opt. 23, 1730 (1984)

    Article  ADS  Google Scholar 

  150. B. Messerschmidt, T. Possner, P. Schreiber: Gradient index optical systems for endoscope applications and beam shaping of laser diodes, Diffractive Optics and Micro-Optics, OSA Tech. Dig. (Optical Society of America, Washington 2000) pp. 303–305

    Google Scholar 

  151. P. Rol, R. Jenny, D. Beck, F. Fankhauser, P.F. Niederer: Optical properties of miniaturized endoscopes for ophthalmic use, Opt. Eng. 34, 2070–2076 (1995)

    Article  ADS  Google Scholar 

  152. J. Knittel, L.G. Schnieder, G. Buess, B. Messerschmidt, T. Possner: Endoscope-compatible confocal microscope using a gradient-index lens system, Opt. Commun. 188, 267–273 (2001)

    Article  ADS  Google Scholar 

  153. J.C. Jung, M.J. Schnitzer: Multiphoton endoscopy, Opt. Lett. 28, 902–904 (2003)

    Article  ADS  Google Scholar 

  154. B.A. Flusberg, J.C. Jung, E.D. Cocker, E.P. Anderson, M.J. Schnitzer: In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope, Opt. Lett. 30, 2272–2274 (2005)

    Article  ADS  Google Scholar 

  155. X. Li, C. Chudoba, T. Ko, C. Pitris, J.G. Fujimoto: Imaging needle for optical coherence tomography, Opt. Lett. 25, 1520–1522 (2000)

    Article  ADS  Google Scholar 

  156. J.M. Lopez-Higuera (Ed.): Optical Sensors (Cantabria Univ. Press, Santander 1998)

    Google Scholar 

  157. P. Drabarek: Modulation interferometer and fiberoptically divided measuring probe with light guided, US Patent WO 99/57506 (1999)

    Google Scholar 

  158. S. Doric: Generalized nonfull-aperture Luneburg lens: a new solution, Opt. Eng. 32, 2118–2121 (1993)

    Article  ADS  Google Scholar 

  159. Doric Lenses: www.doriclenses.com (Doric Lenses, Sainte-Foy 2006)

  160. Nippon Sheet Glass: www.nsgamerica.com (NSG, Somerset 2006)

  161. Lightpath Technologies: www.lightpath.com (Lightpath Technologies, Orlando 2006)

  162. G. Goodman, B. Hunter: Abject about aberration? Grab a gradient, Photonics Spectra 9, 132–138 (1999)

    Google Scholar 

  163. I. Kitano, K. Koizumi, H. Matsumura, K. Ikeda, T. Uchida: Image transmitter formed of a plurality of graded index fibers in bundled configuration, US Patent 3658407 (1972)

    Google Scholar 

  164. J.D. Rees: Non-Gaussian imaging properties of GRIN fiber lens arrays, Appl. Opt. 21, 1009 (1982)

    Article  ADS  Google Scholar 

  165. J.D. Rees, W. Lama: Some radiometric properties of gradient-index fiber lenses, Appl. Opt. 19, 1065 (1980)

    Article  ADS  Google Scholar 

  166. S. Gray: A letter from Mr. Stephen Gray, giving a further account of his water microscope, Phil. Trans. R. Soc. 19(223), 353–356 (1695)

    Article  Google Scholar 

  167. P.M. Moran, S. Dharmatilleke, A.H. Khaw, K.W. Tan, M.L. Chan, I. Rodriguez: Fluidic lenses with variable focal length, Appl. Phys. Lett. 88, 041120–1–041120–3 (2006)

    Article  ADS  Google Scholar 

  168. C.A. Lopez, A.H. Hirsa: Focusing using a pinned-contact oscillating liquid lens, Nat. Photonics 2(10), 610–613 (2008)

    Article  Google Scholar 

  169. G. Lippman: Relation entre les phenomenes electriques et capillaires, Ann. Chim. Phys. 5, 494 (1875)

    Google Scholar 

  170. T.N. Young: An essay on the cohesion of fluids, Phil. Trans. R. Soc. 95, 65 (1805)

    Article  Google Scholar 

  171. B. Berge: Electrocapillarite et mouillage de films isolants par lʼeau, C. r. 317, 157–163 (1993)

    Google Scholar 

  172. F. Mugele, J.-C. Baret: Electrowetting from basics to applications, J. Phys. 17, R705–R774 (2005)

    Google Scholar 

  173. F. Gindele, T. Kolling, F. Gaul: Optical systems based on electrowetting, Proc. SPIE 5455, 89–100 (2004)

    Article  ADS  Google Scholar 

  174. B. Berge, J. Peseux: Variable focal lens controlled by an external voltage: an application of electrowetting, Eur. Phys. J. E 3(2), 159–163 (2000)

    Google Scholar 

  175. B.H.W. Hendriks, S. Kuiper, M.A.J. van As, C.A. Renders, T.W. Tukker: Electrowetting-based variable-focus lens for miniature systems, Opt. Rev. 12(3), 255–259 (2005)

    Article  Google Scholar 

  176. J. Crassous, C. Gabay, G. Liogier, B. Berge: Liquid lens based on electrowetting: A new adaptive component for imaging applications in consumer electronics, Proc. SPIE 5639, 143–148 (2004)

    Article  ADS  Google Scholar 

  177. C. Gabay, B. Berge, G. Dovillaire, S. Bucourt: Dynamic study of a Varioptic variable focal lens, Proc. SPIE 4767, 159–165 (2002)

    Article  Google Scholar 

  178. F. Krogmann, W. Mönch, H. Zappe: A MEMS-based variable micro-lens system, J. Opt. A: Pure Appl. Opt. 8(7), S330–S336 (2006)

    Article  ADS  Google Scholar 

  179. S. Xu, Y. Liu, H. Ren, S.-T. Wu: A novel adaptive mechanical-wetting lens for visible and near infrared imaging, Opt. Express 18(12), 12430–12434 (2010)

    Article  ADS  Google Scholar 

  180. R. Graham: A variable focus lens and its use, J. Opt. Soc. Am. 30, 560–563 (1940)

    Article  ADS  Google Scholar 

  181. Bausch & Lomb: Variable Focus Lens, US Patent 2300251 (1942)

    Google Scholar 

  182. D.-Y. Zhang, N. Justis, Y.-H. Lo: Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view, Opt. Commun. 249(1-3), 175–182 (2005)

    Article  ADS  Google Scholar 

  183. A. Werber, H. Zappe: Tunable microfluidic microlenses, Appl. Opt. 44(16), 3238–3245 (2005)

    Article  ADS  Google Scholar 

  184. J. Chen, W. Wang, J. Fang, K. Varahramyan: Variable-focusing microlens with microfluidic chip, J. Micromech. Microeng. 14(5), 675–680 (2004)

    Article  ADS  Google Scholar 

  185. D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, Y.-H. Lo: Fluidic adaptive lens with high focal length tunability, Appl. Phys. Lett. 82(19), 3171–3172 (2003)

    Article  ADS  Google Scholar 

  186. R. Kuwano, T. Tokunaga, Y. Otani, N. Umeda: Liquid pressure varifocus lens, Opt. Rev. 12(5), 405–408 (2005)

    Article  Google Scholar 

  187. A.H. Rawicz, I. Mikhailenko: Modeling a variable-focus liquid-filled optical lens, Appl. Opt. 35(10), 1587–1589 (1996)

    Article  ADS  Google Scholar 

  188. M. Agarwal, R.A. Gunasekaran, P. Coane, K. Varahramyan: Polymer-based variable focal length microlens system, J. Micromech. Microeng. 14(12), 1665–1673 (2004)

    Article  ADS  Google Scholar 

  189. D.-Y. Zhang, N. Justis, Y.-H. Lo: Fluidic adaptive lens of transformable lens type, Appl. Phys. Lett. 84(21), 4194–4196 (2004)

    Article  ADS  Google Scholar 

  190. H.B. Yu, G.Y. Zhou, F.K. Chau, F.W. Lee, S.H. Wang, H.M. Leung: A liquid-filled tunable double-focus microlens, Opt. Express 17(6), 4782–4790 (2009)

    Article  ADS  Google Scholar 

  191. N. Chronis, G.L. Liu, K.-H. Jeong, L.P. Lee: Tunable liquid-filled microlens array integrated with microfluidic network, Opt. Express 11(19), 2370–2378 (2003)

    Article  ADS  Google Scholar 

  192. C.-M. Ho, Y.-C. Tai: Micro-electro-mechanical-systems (MEMS) and fluid flows, Annu. Rev. Fluid Mech. 30, 579–612 (1998)

    Article  ADS  Google Scholar 

  193. H. Oku, K. Hashimoto, M. Ishikawa: Variable-focus lens with 1-kHz bandwidth, Opt. Express 12(10), 2138–2149 (2004)

    Article  ADS  Google Scholar 

  194. F. Schneider, D. Hohlfeld, U. Wallrabe: Miniaturized Electromagnetic Ferrofluid Actuator, ACTUATOR 2006, Proc. 10th Int. Conf. New Actuators, Bremen 2006 (HVG, Bremen 2006) pp. 124–127, B1.5

    Google Scholar 

  195. D. Koyama, R. Isago, K. Nakamura: Compact, high-speed variable-focus liquid lens using acoustic radiation force, Opt. Express 18(24), 25158–25169 (2010)

    Article  ADS  Google Scholar 

  196. S. Odenbach (Ed.): Ferrofluids: Magnetically Controllable Fluids and Their Applications, Lecture Notes Phys., Vol. 594 (Springer, Berlin, New York 2003)

    Google Scholar 

  197. F.C. Wippermann, P. Schreiber, A. Bräuer, B. Berge: Mechanically assisted liquid lens zoom system for mobile phone cameras, Proc. SPIE 6289, 62890T (2006)

    Article  ADS  Google Scholar 

  198. L. Dong, A.K. Agarwal, D.J. Beebe, H. Jiang: Adaptive liquid microlenses activated by stimuli-responsive hydrogels, Nature 442, 551–554 (2006)

    Article  ADS  Google Scholar 

  199. H. Yu, G. Zhou, F.S. Chau, F. Lee: Optofluidic variable aperture, Opt. Lett. 33(6), 548–550 (2008)

    Article  Google Scholar 

  200. J.A. Armstrong, N. Bloembergen, J. Ducuing, P.S. Pershan: Interactions between light waves in a nonlinear dielectric, Phys. Rev. 127, 1918–1939 (1962)

    Article  ADS  Google Scholar 

  201. E.J. Lim, M.M. Fejer, R.L. Byer: Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide, Electron. Lett. 25, 174–175 (1989)

    Article  Google Scholar 

  202. J. Webjörn, F. Laurell, G. Arvidsson: Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide, IEEE Photonics Technol. Lett. 1, 316–318 (1989)

    Article  ADS  Google Scholar 

  203. M.M. Fejer, G.A. Magel, D.H. Jundt, R.L. Byer: Quasi phase matched 2nd harmonic generation tuning and tolerances, IEEE J. Quantum Electron. 28, 2631–2654 (1992)

    Article  ADS  Google Scholar 

  204. L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, J.W. Pierce: Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO_3, J. Opt. Soc. Am. B 12, 2102–2116 (1995)

    Article  ADS  Google Scholar 

  205. L.E. Myers, G.D. Miller, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg: Quasi-phase-matched 1.064-μ m-pumped optical parametric oscillator in bulk periodically poled LiNbO_3, Opt. Lett. 20, 52–54 (1995)

    Article  ADS  Google Scholar 

  206. D.A. Bryan, R. Gerson, H.E. Tomaschke: Increased optical damage resistance in lithium niobate, Appl. Phys. Lett. 44, 847–849 (1984)

    Article  ADS  Google Scholar 

  207. T.R. Volk, V.I. Pryalkin, N.M. Rubinina: Optical-damage-resistant LiNbO_3:Zn crystal, Opt. Lett. 15, 996–998 (1990)

    Article  ADS  Google Scholar 

  208. Y. Furukawa, K. Kitamura, A. Alexandrovski, R.K. Route, M.M. Fejer, G. Foulon: Green-induced infrared absorption in MgO doped LiNbO_3, Appl. Phys. Lett. 78, 1970–1972 (2001)

    Article  ADS  Google Scholar 

  209. C. Fischer, M.W. Siegrist: Solid-state mid-infrared laser sources, Top. Appl. Phys. 89, 97–140 (2003)

    Google Scholar 

  210. T. Skauli, K.L. Vodopyanov, T.J. Pinguet, A. Schober, O. Levi, L.A. Eyres, M.M. Fejer, J.S. Harris: Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation, Opt. Lett. 27, 628–630 (2002)

    Article  ADS  Google Scholar 

  211. D.A. Roberts: Simplified characterization of uniaxial and biaxial nonlinear optical crystals - A plea for standardization of nomenclature and conventions, IEEE J. Quantum Electron. 28, 2057–2074 (1992)

    Article  ADS  Google Scholar 

  212. P.S. Kuo, K.L. Vodopyanov, M.M. Fejer, D.M. Simanovskii, X. Yu, J.S. Harris, D. Bliss, D. Weyburne: Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs, Opt. Lett. 31, 71–73 (2006)

    Article  ADS  Google Scholar 

  213. G. Dhanaraj, K. Byrappa, V. Prasad, M. Dudley (Eds.): Springer Handbook of Crystal Growth (Springer, Berlin, Heidelberg 2010), Chap. 20

    Google Scholar 

  214. G. Rosenman, P. Urenski, A. Agronin, A. Arie, Y. Rosenwaks: Nanodomain engineering in RbTiOPO_4 ferroelectric crystals, Appl. Phys. Lett. 82, 3934–3936 (2003)

    Article  ADS  Google Scholar 

  215. Y. Cho, S. Hashimoto, N. Odagawa, K. Tanaka, Y. Hiranaga: Realization of 10 Tbit/in.2 memory density and subnanosecond domain switching time in ferroelectric data storage, Appl. Phys. Lett. 87, 232907 (2005)

    Article  ADS  Google Scholar 

  216. C. Restoin, S. Massy, C. Darraud-Taupiac, A. Barthelemy: Fabrication of 1-D and 2-D structures at submicrometer scale on lithium niobate by electron beam bombardment, Opt. Mater. 22, 193–199 (2003)

    Article  ADS  Google Scholar 

  217. J. Son, Y. Yuen, S.S. Orlov, L. Hesselink: Sub-micron ferroelectric domain engineering in liquid phase epitaxy LiNbO_3 by direct-write e-beam techniques, J. Cryst. Growth 281, 492–500 (2005)

    Article  ADS  Google Scholar 

  218. C.L. Sones, M.C. Wengler, C.E. Valdivia, S. Mailis, R.W. Eason, K. Buse: Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals, Appl. Phys. Lett. 86, 212901 (2005)

    Article  ADS  Google Scholar 

  219. M.C. Wengler, B. Fassbender, E. Soergel, K. Buse: Impact of ultraviolet light on coercive field, poling dynamics and poling quality of various lithium niobate crystals from different sources, J. Appl. Phys. 96, 2816–2820 (2004)

    Article  ADS  Google Scholar 

  220. E.P. Kokanyan, V.G. Babajanyan, G.G. Demirkhanyan, J.B. Gruber, S. Erdei: Periodically poled structures in doped lithium niobate crystals, J. Appl. Phys. 92, 1544–1547 (2002)

    Article  ADS  Google Scholar 

  221. I.I. Naumova, N.F. Evlanova, V.A. Dyakov, T.G. Chernevich, O.A. Shustin: Grown PPLN with small period: Selective chemical etching and AFM study, J. Mater. Sci. Mater. Electron. 17, 267–271 (2006)

    Google Scholar 

  222. E. Soergel: Visualization of ferroelectric domains in bulk single crystals, Appl. Phys. B 81, 729–751 (2005)

    Article  ADS  Google Scholar 

  223. C.L. Sones, S. Mailis, W.S. Brocklesby, R.W. Eason, J.R. Owen: Differential etch rates in z-cut LiNbO_3 for variable HF/HNO_3 concentrations, J. Mater. Chem. 12, 295–298 (2002)

    Article  Google Scholar 

  224. M. Alexe, A. Gruverman (Eds.): Nanoscale Characterisation of Ferroelectric Materials, 1st edn. (Springer, Berlin, New York 2004)

    Google Scholar 

  225. K. Mizuuchi, T. Sugita, K. Yamamoto, T. Kawaguchi, T. Yoshino, M. Imaeda: Efficient 340-nm light generation by a ridge-type waveguide in a first-order periodically poled MgO:LiNbO_3, Opt. Lett. 28, 1344–1346 (2003)

    Article  ADS  Google Scholar 

  226. R. Le Targat, J.-J. Zondy, P. Lemonde: 75 %-efficiency blue generation from an intracavity PPKTP frequency doubler, arXiv.org:physics, 0408031 (2004) Unpublished

    Google Scholar 

  227. M. Bode, I. Freitag, A. Tuennermann, H. Welling: Frequency-tunable 500-mW continuous-wave all-solid-state single-frequency source in the blue spectral region, Opt. Lett. 22, 1220–1222 (1997)

    Article  ADS  Google Scholar 

  228. J.D. Joannopoulos, R.D. Meade, J.N. Winn: Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton 1995)

    MATH  Google Scholar 

  229. K. Sakoda: Optical Properties of Photonic Crystals (Springer, Berlin, Heidelberg 2001)

    Google Scholar 

  230. K. Inoue, K. Ohtaka (Eds.): Photonic Crystals: Physics, Fabrication and Applications (Springer, Berlin, Heidelberg 2004)

    Google Scholar 

  231. J.M. Lourtioz, H. Benisty, V. Berger, L.H. Gerard, D. Maystre, A. Tchelnokov: Photonic Crystals: Toward Nanoscale Photonic Devices (Springer, Berlin, Heidelberg 2005)

    Google Scholar 

  232. P. Markos, C.H. Soukoulis: Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials (Princeton Univ. Press, Princeton 2008)

    MATH  Google Scholar 

  233. C. Sibilia, T.M. Benson, M. Marciniak, T. Szoplik (Eds.): Photonic Crystals: Physics and Technology (Springer, Milan 2008)

    Google Scholar 

  234. P.S.J. Russell: Photonic crystal fibers, Science 299, 358–362 (2003)

    Article  ADS  Google Scholar 

  235. M. Notomi: Manipulating light with strongly modulated photonic crystals, Rep. Prog. Phys. 73, 096501 (2010)

    Article  ADS  Google Scholar 

  236. K. Ohtaka: Energy band of photons and low-energy photon diffraction, Phys. Rev. B 19(10), 5057–5067 (1979)

    Article  ADS  Google Scholar 

  237. E. Yablonovitch: Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58(20), 2059–2062 (1987)

    Article  ADS  Google Scholar 

  238. S. John: Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58, 2186–2189 (1987)

    Article  ADS  Google Scholar 

  239. K. Ohtaka: Theory I. Basic aspects of photonic bands. In: Photonic Crystals, ed. by K. Inoue, K. Ohtaka (Springer, Berlin, Heidelberg 2004), Chap. 3

    Google Scholar 

  240. K. Inoue, M. Wada, K. Sakoda, A. Yamanaka, M. Hayashi, J.W. Haus: Fabrication of two-dimensional photonic band structure with near-infrared band gap, Jpn. J. Appl. Phys. 33(10B), L1463–L1465 (1994)

    Article  ADS  Google Scholar 

  241. S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan: Full three-dimensional photonic bandgap crystal at near-infrared wavelengths, Science 289, 604–606 (2000)

    Article  ADS  Google Scholar 

  242. T.F. Krauss, R.M. De La Rue, S. Brand: Two-dimensional photonic-band-gap structures operating at near infrared wavelengths, Nature 383, 699–702 (1996)

    Article  ADS  Google Scholar 

  243. N. Carlsson, T. Takemori, K. Asakawa, Y. Katayama: Scattering-method calculation of propagation modes in two-dimensional photonic crystal of finite thickness, J. Opt. Soc. Am. B 18(9), 1260–1267 (2001)

    Article  ADS  Google Scholar 

  244. S.G. Johnson, S. Fan, P.R. Villeneuve, J.D. Joannopoulos: Guided modes in photonic crystal slabs, Phys. Rev. B 60(8), 5751–5758 (1999)

    Article  ADS  Google Scholar 

  245. S.C. Kitson, W.L. Barnes, J.R. Sambles: Full photonic band gap for surface modes in the visible, Phys. Rev. Lett. 77(13), 2670–2673 (1996)

    Article  ADS  Google Scholar 

  246. Y. Segawa, K. Ohtaka: Other types of photonic crystals. In: Photonic Crystals, ed. by K. Inoue, K. Ohtaka (Springer, Berlin, Heidelberg 2004), Chap. 8

    Google Scholar 

  247. T.E. Ebbessen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff: Extraordinary optical transmission through subwavelength hole arrays, Nature 391, 667–669 (1998)

    Article  ADS  Google Scholar 

  248. M. Notomi: Theory of light propagation in strongly modulated photonic crystal: Refractionlike behavior in the vicinity of the photonic band gap, Phys. Rev. B 62(16), 10696–10705 (2000)

    Article  ADS  Google Scholar 

  249. J.B. Pendry: Negative refraction makes a perfect lens, Phys. Rev. Lett. 85(18), 3966–3969 (2000)

    Article  ADS  Google Scholar 

  250. M. Notomi, H. Suzuki, T. Tamamura, K. Edagawa: Lasing action due to the two-dimensional quasi-periodicity of photonic quasi-crystals with a Penrose lattice, Phys. Rev. Lett. 92(12), 123906 (2004)

    Article  ADS  Google Scholar 

  251. H. Miyazaki, M. Hase, H.T. Miyazaki, Y. Kurosawa, N. Shinya: Photonic material for designing arbitrarily shaped waveguides in two dimensions, Phys. Rev. B 67(23), 235109 (2003)

    Article  ADS  Google Scholar 

  252. K. Edagawa, S. Kanoko, M. Notomi: Photonic amorphaous diamond structure with a 3D photonic band gap, Phys. Rev. Lett. 100(1), 013901 (2008)

    Article  ADS  Google Scholar 

  253. V. Berger: Nonlinear photonic crystals, Phys. Rev. Lett. 81, 4136–4139 (1998)

    Article  ADS  Google Scholar 

  254. N.G.R. Broderick, G.W. Ross, H.L. Offerhaus, D.J. Richardson, D.C. Hanna: Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal, Phys. Rev. Lett. 84(19), 4345–4348 (2000)

    Article  ADS  Google Scholar 

  255. Y. Zhang, Z.D. Gao, Z. Qi, S.N. Zhu, N.B. Ming, P. Xu, S.H. Ji, S.N. Zhu, X.Q. Yu, J. Sun, H.T. Wang, J.L. He, Y.Y. Zhu, N.B. Ming: Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguide, Phys. Rev. Lett. 100(16), 163904 (2008)

    Article  ADS  Google Scholar 

  256. Y. Akahane, T. Asano, B.S. Song, S. Noda: Fine-tuned high-Q photonic-crystal nanocavity, Opt. Express 13(4), 1202–1214 (2005)

    Article  ADS  Google Scholar 

  257. S.G. Johnson, P.R. Villeneuve, S. Fan, J.D. Joannopoulos: Linear wave-guides in photonic-crystal slabs, Phys. Rev. B 62(2), 8212–8222 (2000)

    Article  ADS  Google Scholar 

  258. P.S.J. Russell: Photonic crystal fibers, J. Lightwave Technol. 24, 4729–4749 (2006)

    Article  ADS  Google Scholar 

  259. T. Baba: Slow light in photonic crystals, Nat. Photonics 2, 465–476 (2008)

    Article  ADS  Google Scholar 

  260. K. Ohtaka: Theory II. Advanced topics of photonic crystals. In: Photonic Crystals, ed. by K. Inoue, K. Ohtaka (Springer, Berlin, Heidelberg 2004), Chap. 4

    Google Scholar 

  261. K. Ohtaka, T. Ueta, Y. Tanabe: Photonic band using vector spherical waves. IV. Analog of optics of photonic crystals to that of anisotropic crystals, J. Phys. Soc. Japan 65(9), 3068–3077 (1996)

    Article  ADS  Google Scholar 

  262. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami: Superprism phemomena in photonic crystals, Phys. Rev. B 58(16), R10096–R10099 (1998)

    Article  ADS  Google Scholar 

  263. T. Baba: Photonic crystal devices. In: Photonic Crystals, ed. by K. Inoue, K. Ohtaka (Springer, Berlin, Heidelberg 2004), Chap. 11

    Google Scholar 

  264. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis: Electromagnetic waves: Negative refraction by photonic crystals, Nature 423, 604–607 (2003)

    Article  ADS  Google Scholar 

  265. A. Barrier, M. Mulot, M. Swillo, M. Qui, L. Thylen, A. Talneau, S. Anand: Negative refraction at infrared wavelengths in a two-dimensional photonic crystal, Phys. Rev. Lett. 93(7), 073902 (2004)

    Article  ADS  Google Scholar 

  266. T. Fujita, Y. Sato, T. Kuitani, T. Ishihara: Tunable polariton absorption of distributed feedback microcavities at room temperatuue, Phys. Rev. B 57(19), 12428–12534 (1998)

    Article  ADS  Google Scholar 

  267. V.N. Astratov, D.M. Wittakar, I.S. Culshaw, R.M. Stevenson, M.S. Skolnick, T.F. Krauss, R.M. De La Rue: Photonic band-structure effects in the reflectivity of periodically patterned waveguides, Phys. Rev. B 60(24), R16255 (1999)

    Article  ADS  Google Scholar 

  268. M. Galli, M. Agio, L.C. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, P. Bellutti: Spectroscopy of photonic bands in macroporous silicon photonic crystals, Phys. Rev. B 65(11), 113111 (2002)

    Article  ADS  Google Scholar 

  269. M. Galli, P. Bellutti, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, M. Agio, L.C. Andreani, Y. Chen: Excitation of radiative and evanescent defect modes in linear photonic crystal waveguides, Phys. Rev. B 70(8), 081307 (2004)

    Article  ADS  Google Scholar 

  270. M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, L.C. Andreani, M. Belotti, Y. Chen: Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflection, Phys. Rev. B 72(12), 125322 (2005)

    Article  ADS  Google Scholar 

  271. K. Inoue, Y. Sugimoto, N. Ikeda, Y. Tanaka, K. Asakawa, T. Maruyama, K. Miyashita, K. Ishida, Y. Watanabe: Ultra-small GaAs-photonic-crystal-waveguide-based near-infrared components fabrication, guided-mode identification and estimation of low-loss and broad-band-width in straight waveguides, 60° bends and Y-splitters, Jpn. J. Appl. Phys. 43(9A), 6112–6124 (2004)

    Article  ADS  Google Scholar 

  272. M. Loncar, D. Nedeljkovic, T. Pearsajl, J. Vuckobvic, A. Scherer, S. Kuchinsky, D.C. Allan: Experimental and theoretical confirmation of Bloch-mode light propagation in planar photonic crystal waveguides, Appl. Phys. Lett. 80(10), 1689–1691 (2002)

    Article  ADS  Google Scholar 

  273. K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S.O.K. Inoue, M. Kristensen, O. Sigmund, P.I. Borel, R. Baets: Photonic crystal and quantum dot technologies for all-optical switch and logic device, New J. Phys. 8(6), 1–26 (2006)

    Google Scholar 

  274. S.I. Bozhevolnyi, V.S. Volkov, T. Sondergaard, A. Bolltasseva, P.I. Borel, M. Kristensen: Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics, Phys. Rev. B 66(23), 235204 (2002)

    Article  ADS  Google Scholar 

  275. H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korerik, N.F. van Hulst, T.F. Krauss, L. Kuipers: Real-space observation of ultraslow light in photonic crystal waveguides, Phys. Rev. Lett. 94(7), 073903 (2005)

    Article  ADS  Google Scholar 

  276. R.J.P. Engelen, Y. Sugimoto, H. Gensen, N. Ikeda, K. Asakawa, L. Kuipers: Ultrafast evolution of photonic eigenstates in k-space, Nature Phys. 3, 401–405 (2007)

    Article  ADS  Google Scholar 

  277. M.D. Purcell: Spontaneous emission probabilities at radio frequencies, Phys. Rev. 69, 681 (1946)

    Article  Google Scholar 

  278. S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, S. Noda: Control of light emission by 3-D photonic crystals, Science 305, 227–229 (2004)

    Article  ADS  Google Scholar 

  279. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, S. Noda: Simultaneous inhabitation and redistribution of spontaneous light emission in photonic crystals, Science 308(5726), 1296–1298 (2005)

    Article  ADS  Google Scholar 

  280. T. Kuroda, N. Ikeda, T. Mao, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, K. Asakawa: Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities, Appl. Phys. Lett. 93(11), 111103 (2008)

    Article  ADS  Google Scholar 

  281. S.J. Dewhurst, D. Granados, D.J.P. Ellis, A.T. Bennett, R.B. Patel, I. Farrer, D. Anderson, G.A.C. Johns, D.A. Ritchie, A.J. Shields: Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide, Appl. Phys. Lett. 96(3), 031109 (2010)

    Article  ADS  Google Scholar 

  282. T. Yoshie, A. Scherer, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shehekin, D.G. Deppe: Rabi splitting with a single quantum dot in a photonic crystal nanocavity, Nature 432, 200–203 (2004)

    Article  ADS  Google Scholar 

  283. S. Fan, P.R. Villeneuve, J.D. Joannopoulos, E.F. Schubert: High extraction efficiency of spontaneous emission from slabs of photonic crystals, Phys. Rev. Lett. 78(17), 3294–3297 (1997)

    Article  ADS  Google Scholar 

  284. T.N. Oder, K.H. Kim, J.Y. Lin, H.X. Jiang: III-nitride blue and ultraviolet photonic crystal light emitting diodes, Appl. Phys. Lett. 84(4), 466–468 (2004)

    Article  ADS  Google Scholar 

  285. J. Shakya, K.H. Kim, J.Y. Lin, H.X. Jiang: Enhanced light extraction in III-nitride ultraviolet photonic crystal light-emitting diodes, Appl. Phys. Lett. 85(1), 142–144 (2004)

    Article  ADS  Google Scholar 

  286. K. McGroddy, A. David, E. Matioli, M. Iza, S. Nakamura, S.S. DenBaars, J. Speck, C. Weisbuch, E.L. Hu: Directional emission control and increased light extraction in GaN photonic crystal light emitting diodes, Appl. Phys. Lett. 93(10), 103502 (2008)

    Article  ADS  Google Scholar 

  287. H. Ichikawa, T. Baba: Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal, Appl. Phys. Lett. 84(4), 457–459 (2004)

    Article  ADS  Google Scholar 

  288. Z.S. Zhang, B. Zhang, J. Xu, K. Xu, Z.J. Yang, Z.X. Qin, T.J. Yu, D.P. Yu: Effects of symmetry of GaN-based two-dimensional photonic crystal with quasicrystal lattices on enhancement of surface light extraction, Appl. Phys. Lett. 88(17), 171103 (2006)

    Article  ADS  Google Scholar 

  289. A. David, T. Fujii, E. Matioli, R. Sharma, S. Nakamura, H. Benisty: GaN light emitting diodes with Archimedean lattice photonic crystals, Appl. Phys. Lett. 88(7), 073510 (2006)

    Article  ADS  Google Scholar 

  290. M. Fujita, T. Ueno, T. Asano, S. Noda, H. Ohhata, T. Tsuji, H. Nakada, N. Shimoji: Organic light-emitting diode with ITO/organic photonic crystal, Electron. Lett. 39(24), 1745–1751 (2003)

    Article  Google Scholar 

  291. M. Galli, A. Politi, M. Belotti, D. Gerace, M. Liscidini, L.G. Andreani, M. Mirittero, A. Irrera, F. Piriolo, Y. Cern: Strog enhancement of Er3+ emission at room temperature in silicon-on-insulator photonic crystal waveguides, Appl. Phys. Lett. 88(25), 251114 (2006)

    Article  ADS  Google Scholar 

  292. M. Kanibe, A. Kress, A. Laucht, M. Bichler, R. Meyer, M.C. Amann, J.J. Finley: Efficient special redistribution of quantum-dot spontaneous emission from two-dimensional photonic crystals, Appl. Phys. Lett. 91(6), 061106 (2007)

    Article  ADS  Google Scholar 

  293. K. Inoue, H. Oda, A. Yamanaka, N. Ikeda, H. Kawashima, Y. Sugimoto, K. Asakawa: Dramatic density-of-state enhancement of Raman scattering at the band edge in a one-dimensional photonic-crystal waveguide, Phys. Rev. A 78(1), 011805 (2008)

    Article  ADS  Google Scholar 

  294. J.M. McMillan, M. Yu, D.-L. Kwong, C.W. Wong: Observation of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides, Appl. Phys. Lett. 93(25), 251105 (2008)

    Article  ADS  Google Scholar 

  295. K. Checoury, M.L. Kurdi, Z. Han, P. Boucud: Enhanced spontaneous Raman scattering in silicon photonic crystal waveguides on insulator, Opt. Express 17(5), 3500–3507 (2009)

    Article  ADS  Google Scholar 

  296. H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, K. Asakawa: Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides, Appl. Phys. Lett. 93(5), 051114 (2008)

    Article  ADS  Google Scholar 

  297. X. Checoury, Z. Fan, M.E. Kurdi, P. Boucaud: Deterministic measurement of the Purcell factor in microcavities through Raman scattering, Phys. Rev. A 81(3), 033832 (2010)

    Article  ADS  Google Scholar 

  298. X. Checoury, Z. Han, P. Boucard: Stimulated Raman scattering in silicon photonic crystal waveguides under continuous excitation, Phys. Rev. B 82(4), 041308 (2010)

    Article  ADS  Google Scholar 

  299. J.F. McMillan, M. Yu, D.-L. Kwong, C.W. Wong: Observation of four-wave mixing in slow-light silicon photonic crystal waveguides, Opt. Express 18(15), 15484 (2010)

    Article  ADS  Google Scholar 

  300. K. Sakoda, K. Ohtaka: Sum-frequency generation in a two-dimensional photonic lattice, Phys. Rev. B 54(8), 5742–5749 (1996)

    Article  ADS  Google Scholar 

  301. J. Bravo-Abad, A. Rodriguez, P. Bermel, S.G. Johnson, J.D. Joannopoulos, M. Soljacic: Enhanced nonlinear optics in photonic-crystal microcavities, Opt. Express 15(24), 16161–16176 (2007)

    Article  ADS  Google Scholar 

  302. R. Yeh: Optical Waves in Layered Media (Wiley, New York, 1988), Chapters 6 and 7

    Google Scholar 

  303. M. Scalora, M.J. Bloemer, A.S. Manka, J.P. Dowling, C.M. Bowden, R. Viswanathan, J.W. Haus: Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures, Phys. Rev. A 56(4), 3166–3174 (1997)

    Article  ADS  Google Scholar 

  304. M. Centini, C. Sibilia, M. Scalora, G. DʼAguanno, M. Bertolotti, M.J. Bloemer, C.M. Bowden, I. Nefedov: Dispersive properties of finite, one-dimensional photonic gap structures: Application to nonlinear quadratic interactions, Phys. Rev. E 60(4), 4891–4899 (1999)

    Article  ADS  Google Scholar 

  305. S. Kawakami (Ed.): Photonic Crystal Technology – Scenario of Industrialization (CMC, Tokyo 2005), (in Japanese), Chap. 15

    Google Scholar 

  306. J.M. Bendickson, J.P. Dowling, M. Scalora: Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures, Phys. Rev. E 53(4), 4107–4121 (1996)

    Article  ADS  Google Scholar 

  307. Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Meriadec, A. Levenson: Phase-matched frequency doubling at photonic band edges: Efficiency scaling as the fifth power of the length, Phys. Rev. Lett. 89(4), 043901 (2002)

    Article  ADS  Google Scholar 

  308. S. Bouchoule, S. Boubanga-Tombel, L. Le Gratiet, M. Le Vassor d`Yerville, J. Torres, Y. Chen, D. Coquillat: Reactive ion etching of high optical quality GaN/sapphire photonic crystal slab using CH_4-H_2 chemistry, J. Appl. Phys. 101(4), 043103 (2007)

    Article  ADS  Google Scholar 

  309. M. Liscidini, A. Locatelli, L.C. Andreani, C. De Angelis: Maximum-exponent scaling behavior of second-harmonic generation in finite multilayer photonic crystals, Phys. Rev. Lett. 99(5), 053907 (2007)

    Article  ADS  Google Scholar 

  310. M.G. Martemyanov, E.M. Kim, T.V. Dolgova, A.A. Fedyanin, O.A. Aktsipetrov, G. Marowsky: Third-harmonic generation in silicon photonic crystal and microcavities, Phys. Rev. B 70(7), 073311 (2004)

    Article  ADS  Google Scholar 

  311. F.-F. Ren, R.R. Li, C. Chen, J. Chen, Y.-X. Fan, J. Ding, H.-T. Wang: Low-threshold and high-efficiency optical parametric oscillator using a one-dimensional single-defect photonic crystal with quadratic nonlinearity, Phys. Rev. B 73(3), 033104 (2006)

    Article  ADS  Google Scholar 

  312. P.R. Markowitz, H. Tiryaki, H. Pudavar, P.N. Prasad, N.N. Lepeshkin, R. Boyd: Dramatic enhancement of third-harmonic generation in three-dimensional photonic crystals, Phys. Rev. Lett. 92(8), 083903 (2004)

    Article  ADS  Google Scholar 

  313. A.A. Fedyanin, O.A. Aktsipetrov, D.A. Kurdyukov, V.G. Golubed, M. Inoue: Nonlinear diffraction and second-harmonic generation enhancement in silicon-opal photonic crystals, Appl. Phys. Lett. 87(15), 151111 (2005)

    Article  ADS  Google Scholar 

  314. A.R. Cowan, J.F. Young: Mode matching for second-harmonic generation in photonic crystal waveguides, Phys. Rev. B 65(8), 085106 (2002)

    Article  ADS  Google Scholar 

  315. E. Centeno, D. Filbacq, D. Gassagne: All-angle phase matching condition and backward second-harmonic localization in nonlinear photonic crystals, Phys. Rev. Lett. 98(26), 263903 (2007)

    Article  ADS  Google Scholar 

  316. Y.H. Lee, A. Chavez-Pirson, S.W. Koch, H.M. Gibbs, S.H. Park, J. Morhange, A. Jeffery, N. Payghambarian, L. Banyai, A.C. Gossard, W. Wiegmann: Room temperature optical nonlinearities in GaAs, Phys. Rev. Lett. 57(19), 2446–2449 (1986)

    Article  ADS  Google Scholar 

  317. H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, K. Asakawa: Self-phase modulation in photonic-crystal-slab line-defect waveguides, Appl. Phys. Lett. 90(23), 231102 (2007)

    Article  ADS  Google Scholar 

  318. K. Inoue, H. Oda, N. Ikeda, K. Asakawa: Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line-defect, Opt. Express 17(9), 7206–7216 (2009)

    Article  ADS  Google Scholar 

  319. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B.J. Eggleton, T.P. White, L. OʼFaolain, T.F. Krauss: Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides, Opt. Express 17(4), 2944–2953 (2009)

    Article  ADS  Google Scholar 

  320. S. Kawakami: Fabrication of sub-micrometer 3-D periodic structures composed of Si/SiO_2, Electron. Lett. 33(14), 1260–1261 (1997)

    Article  Google Scholar 

  321. S. Noda, N. Yamamoto, M. Imada, H. Kobayashi, M. Okano: Alignment and stacking of semiconductor photonic bandgaps by wafer-fusion, IEEE J. Lightwave Technol. 17(11), 1948–1955 (1999)

    Article  ADS  Google Scholar 

  322. S. Kawakami, T. Kawashima, T. Sato: Mechanism of shape formation of three-dimensional nanostructures by bias sputtering, Appl. Phys. Lett. 74(3), 463 (1999)

    Article  ADS  Google Scholar 

  323. Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, S. Kawakami: Photonic Crystal polarization splitter, Electron. Lett. 35(15), 1271–1272 (1999)

    Article  Google Scholar 

  324. T. Kawashima, T. Sato, Y. Ohtera, S. Kawakami: Tailoring of the unit cell structure of autocloned photonic crystals, IEEE J. Quantum Electron. 38(7), 899–903 (2002)

    Article  ADS  Google Scholar 

  325. J. Yonekura, M. Ikeda, T. Baba: Analysis of finite 2-D photonic crystals and lightwave devices using the scattering matrix method, IEEE J. Lightwave Technol. 17(8), 1500–1508 (1999)

    Article  ADS  Google Scholar 

  326. M. Loncar, T. Doll, J. Vuckovic, A. Scherer: Design and fabrication of silicon photonic crystal optical waveguides, J. Lightwave Technol. 18(10), 1402–1411 (2000)

    Article  ADS  Google Scholar 

  327. Y.A. Vlasov, M. OʼBoyle, H.F. Hamann, S.J. McNab: Active control of slow light on a chip with photonics crystal waveguides, Nature 438(3), 65–69 (2005)

    Article  ADS  Google Scholar 

  328. J.D. Joannopoulos, P.R. Villeneuve, S.H. Fan: Photonic crystals: putting a new twist on light, Nature 386, 143–149 (1997)

    Article  ADS  Google Scholar 

  329. J.S. Jensen, O. Sigmund, L.H. Frandsen, P.I. Borel, A. Harpøth, M. Kristensen: Topology design and fabrication of an efficient double 90-degree photonic crystal waveguide bend, IEEE Photonics Technol. Lett. 17(6), 1202–1204 (2005)

    Article  ADS  Google Scholar 

  330. Y. Watanabe, Y. Sugimoto, N. Ikeda, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, K. Asakawa: Broadband waveguide intersection with low crosstalk in two-dimensional photonic crystal circuits by using topology optimization, Opt. Express 14(14), 9502–9507 (2006)

    Article  ADS  Google Scholar 

  331. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama: Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs, Phys. Rev. Lett. 87(25), 253902 (2001)

    Article  ADS  Google Scholar 

  332. K. Inoue, N. Kawai, Y. Sugimoto, N. Carlsson, N. Ikeda, K. Asakawa: Observation of small group velocity in two-dimensional AlGaAs photonic crystal slabs, Phys. Rev. B 65(12), 121308 (2002)

    Article  ADS  Google Scholar 

  333. A. Yariv, Y. Xu, R.K. Lee, A. Scherere: Coupled-resonator optical waveguide: a proposal and analysis, Opt. Lett. 24(11), 711–713 (1999)

    Article  ADS  Google Scholar 

  334. S. Lan, S. Nishikawa, H. Ishikawa: Design of impurity band-based photonic crystal waveguides and deley lines for ultrashort optical pulsed, J. Appl. Phys. 90(9), 4321–4327 (2001)

    Article  ADS  Google Scholar 

  335. K. Hosomi, T. Katsuyama: A dispersion compensator using coupled defects in a photonic crystal, IEEE J. Quantum Electron. 38(7), 825–829 (2002)

    Article  ADS  Google Scholar 

  336. T. Fukamachi, K. Hosomi, T. Katsuyama, Y. Arakawa: Group-delay properties of coupled-defect structures in photonic crystals, Jpn. J. Appl. Phys. 43(4A), L449–L452 (2004)

    Article  ADS  Google Scholar 

  337. S. Fan, P.R. Villeneuve, J.D. Joannopoulos: Channel drop tunneling through localized states, Phys. Rev. Lett. 80(5), 960–963 (1998)

    Article  ADS  Google Scholar 

  338. S. Noda, A. Chutinan, M. Imada: Trapping and emission of photons by a single defect in a photonic bandgap structure, Nature 407, 608–610 (2000)

    Article  ADS  Google Scholar 

  339. Y. Akahane, T. Asano, B.-S. Song, S. Noda: Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs, Appl. Phys. Lett. 83(8), 1512–1514 (2003)

    Article  ADS  Google Scholar 

  340. B.-S. Song, S. Noda, T. Asano: Photonic devices based on in-plane hetero photonic crystals, Science 300, 1537 (2003)

    Article  Google Scholar 

  341. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, H.-Y. Ryu: Waveguides, resonators and their coupled elements in photonic crystal slabs, Opt. Express 12(8), 1551–1556 (2004)

    Article  ADS  Google Scholar 

  342. M. Shirane, A. Gomyo, K. Miura, Y. Ohtera, H. Yamada, S. Kawakami: Coupled waveguide devices based on autocloned photonic crystals, Jpn. J. Appl. Phys. 43(3), 1986–1989 (2004)

    Article  ADS  Google Scholar 

  343. J. Vuckovic, M. Loncar, H. Mabuchi, A. Scherer: Optimization of the Q factor in photonic crystal microcavities, IEEE J. Quantum Electron. 38(7), 850–856 (2002)

    Article  ADS  Google Scholar 

  344. K. Shrinivasan, O. Painter: Momentum space design of high-Q photonic crystal optical cavities, Opt. Express 10(15), 670–684 (2002)

    ADS  Google Scholar 

  345. Y. Akahane, T. Asano, B.S. Song, S. Noda: High-Q photonic nanocavity in a two-dimensional photonic crystal, Nature 425, 944 (2003)

    Article  ADS  Google Scholar 

  346. T. Asano, S. Noda: Tuning holes in photonic-crystal nanocavities, Nature 429, 1038–1040 (2004)

    Article  Google Scholar 

  347. B.S. Song, S. Noda, T. Asano, Y. Akahane: Ultra-high-Q photonic double-hetero-structure nanocavity, Nat. Mater. 4, 207–210 (2005)

    Article  ADS  Google Scholar 

  348. M.F. Yanik, W. Suh, Z. Wang, S. Fan: Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency, Phys. Rev. Lett. 93(23), 233903 (2004)

    Article  ADS  Google Scholar 

  349. Editorial/Focus: Taking things slow, Nat. Photonics 2, 447 (2008)

    Article  Google Scholar 

  350. T.F. Krauss: Why do we need slow light?, Nat. Photonics 2, 448–450 (2008)

    Article  ADS  Google Scholar 

  351. D. Mori, T. Baba: Dispersion-controlled optical group delay device by chirped photonic crystal waveguide, Appl. Phys. Lett. 85(7), 1101–1103 (2004)

    Article  ADS  Google Scholar 

  352. K. Tajima: All-optical switch with switch-off time unrestricted by carrier lifetime, Jpn. J. Appl. Phys. 32(12A), L1746–L1748 (1993)

    Article  ADS  Google Scholar 

  353. K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P.I. Borel, R. Baets: Photonic crystal and quantum dot technologies for all-optical switch and logic device, New J. Phys. 8(6), 1–26 (2006)

    Google Scholar 

  354. H. Nakamura, K. Kanamoto, Y. Nakamura, S. Ohkouchi, H. Ishikawa, K. Asakawa: Nonlinear optical phase shift in InAs quantum dots measured by a unique two-color pump/probe ellipsometric polarization analysis, J. Appl. Phys. 96(3), 1425–1434 (2004)

    Article  ADS  Google Scholar 

  355. Y. Sugimoto, Y. Tanaka, N. Ikeda, H. Nakamura, K. Kanamoto, S. Ohkouchi, Y. Watanabe, K. Inoue, K. Asakawa: Fabrication and characterization of photonic crystal based symmetric Mach–Zehnder (PC-SMZ) structures based on GaAs membrane slab waveguides, IEEE J. Sel. Areas Commun. 23(7), 1308–1314 (2005)

    Article  Google Scholar 

  356. H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, K. Asakawa: Ultra-fast photonic crystal/quantum dot alloptical switch for future photonic networks, Opt. Express 12(26), 6606–6614 (2004)

    Article  ADS  Google Scholar 

  357. Y. Kitagawa, N. Ozaki, Y. Takata, N. Ikeda, Y. Watanabe, A. Mizutani, Y. Sugimoto, K. Asakawa: Measurements of optical nonlinearity induced phase-shifts of signal pulse with repetitive control pulses in photonic crystal/ quantum dot waveguide, Proc. LEOS Annu. Meet. (2007)

    Google Scholar 

  358. M. Soljacic, M. Ibanescu, S.G. Johnson, Y. Fink, J.D. Joannopoulos: Optimal bistable switching in nonlinear photonic crystals, Phys. Rev. E 66(59), 055601 (2002)

    Article  ADS  Google Scholar 

  359. M.F. Yanik, S.H. Fan, M. Soljacic, J.D. Joannopoulos: All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry, Opt. Lett. 28(24), 2506–2508 (2003)

    Article  ADS  Google Scholar 

  360. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, T. Tanabe: Optical bistable switching action of Si high-Q photonic-crystal nano-cavities, Opt. Express 13(7), 2678–2687 (2005)

    Article  ADS  Google Scholar 

  361. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, E. Kuramochi: All-optical switches on a silicon chip realized using photonic crystal nano-cavities, Appl. Phys. Lett. 87(15), 151112 (2005)

    Article  ADS  Google Scholar 

  362. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, M. Notomi: Sub-femtojoule all-optical switching using a photonic-crystal nano-cavity, Nat. Photonics 4, 477–483 (2010)

    Article  ADS  Google Scholar 

  363. T. Kampfrath, D.M. Beggs, T.P. White, M. Burresi, D. van Oosten, T.F. Krauss, L. Kuipers: Ultrafast rerouting of light via slow modes in a nanophotonic directional coupler, Appl. Phys. Lett. 94(21), 241119 (2009)

    Article  ADS  Google Scholar 

  364. A. Shinya, S. Matsuo, Yosia, T. Tanabe, E. Kuramochi, T. Sato, T. Kakitsuka, M. Notomi: All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal, Opt. Express 16(23), 19382–19387 (2008)

    Article  ADS  Google Scholar 

  365. O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. OʼBrien, P.D. Dapkus, I. Kim: Two-dimensional photonic band-gap defect mode laser, Science 284, 1819–1821 (1999)

    Article  Google Scholar 

  366. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, M. Mochizuki: Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design, Science 293(10), 1123–1125 (2001)

    Article  ADS  Google Scholar 

  367. S. Noda, T. Kawakami, S. Kawashima: Three-dimensional photonic crystals. In: Photonic Crystals, ed. by K. Inoue, K. Ohtaka (Springer, Berlin, Heidelberg 2004), Chap. 7

    Google Scholar 

  368. K. Inoue, H. Sasaki, K. Ishida, Y. Sugimoto, N. Ikeda, Y. Tanaka, S. Ohkouchi, Y. Nakamura, K. Asakawa: InAs quantum dot laser utilizing GaAs photonic-crystal line-defect waveguide, Opt. Express 12(22), 5502–5509 (2004)

    Article  ADS  Google Scholar 

  369. H. Horiuchi, T. Ochiai, J. Inoue, Y. Segawa, Y. Shibata, K. Ishi, Y. Kondo, M. Kanbe, H. Miyazaki, F. Hinode, S. Yamaguchi, K. Ohtaka: Exotic radiation from a photonic crystal excited by an ultra-relativistic electron beam, Phys. Rev. E 74(5), 056601 (2006)

    Article  ADS  Google Scholar 

  370. T. Ochiai, K. Ohtaka: Theory of unconventional Smith-Purcell radiation in finite-size photonic crystal, Opt. Express 14(16), 7378–7397 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert Brunner , Malte Hagemann , Steffen Reichel , Kiyoshi Asakawa , Enrico Geißler , Dietrich Martin , Bernhard Messerschmidt , Kazuo Ohtaka , Elisabeth Soergel or Matthias Brinkmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this chapter

Cite this chapter

Brunner, R. et al. (2012). Advanced Optical Components. In: Träger, F. (eds) Springer Handbook of Lasers and Optics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19409-2_8

Download citation

Publish with us

Policies and ethics