Skip to main content

Testing the Variation of Fundamental Constants with the CMB

  • Conference paper
  • First Online:
From Varying Couplings to Fundamental Physics

Abstract

The high precision of current and future CMB data may allow the detection of numerous physical processes that might change the standard model of recombination, leaving recognizable imprints on the angular power spectra. We review some of the results obtained in constraining the variation of fundamental constants, in particular the effects of the gravitational constant G and of the fine structure constant α.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See http://www.codata.org/

References

  1. P.P. Avelino et al., Phys. Rev. D64 (2001) 103505 [arXiv:astro-ph/0102144]; C.J.A.P. Martins et al., Phys. Rev. D66 (2002) 023505 [arXiv:astro-ph/0203149].

    Google Scholar 

  2. J.D. Barrow, J. Magueijo and H.B. Sandvik, Phys. Lett. B541 (2002) 201 [arXiv:astro-ph/0204357].

    MathSciNet  ADS  Google Scholar 

  3. M.L. Brown et al. [QUaD collaboration], arXiv:0906.1003.

    Google Scholar 

  4. H.C. Chiang et al., arXiv:0906.1181.

    Google Scholar 

  5. T. Clifton, J.D. Barrow and R.J. Scherrer, Phys. Rev. D71 (2005) 123526. A. Liddle, A. Mazumdar and J.D. Barrow Phys. Rev. D58 (1998) 027302. F. Wu, L. Qiang, X. Wang, X. Chen, arXiv:0903.0384; F. Wu, L. Qiang, X. Wang, X. Chen, arXiv:0903.0385.

    Google Scholar 

  6. T. Damour, F. Piazza and G. Veneziano, Phys. Rev. D66 (2002) 046007 [arXiv:hep-th/ 0205111].

    MathSciNet  Google Scholar 

  7. P.A.M. Dirac, Nature (London) 139 (1937) 323. P.A.M. Dirac, Proc. Roy. Soc. London A165 (1938) 198. P.A.M. Dirac, Proc. Roy. Soc. London A338 (1974) 439. P.A.M. Dirac, Proc. Roy. Soc. London A 365 (1979) 19.

    Google Scholar 

  8. S. Galli, A. Melchiorri, G.F. Smoot and O. Zahn, Phys. Rev. D80 (2009) 023508 [arXiv:0905.1808]

    Google Scholar 

  9. S. Galli et al., arXiv:1005.3808, Phys. Rev. D (2010) in press.

    Google Scholar 

  10. E. Garcia-Berro, J. Isern and Y. A. Kubyshin, Astron. Astrophys. Rev. 14 (2007) 113.

    Article  ADS  Google Scholar 

  11. P.R. Heyl and P. Chrzanowski, J. Res. Natl. Bur. Std. U.S. 29 (1942) 1.

    Google Scholar 

  12. G. Hinshaw et al. [WMAP Collaboration], arXiv:0803.0732.

    Google Scholar 

  13. W. Hu, D. Scott, N. Sugiyama and M. White, Phys. Rev. D52 (1998) 5498.

    ADS  Google Scholar 

  14. K. Ichikawa, T. Kanzaki and M. Kawasaki, Phys. Rev. D74 (2006) 023515 [arXiv:astro-ph/ 0602577].

    Google Scholar 

  15. W. C. Jones et al., arXiv:astro-ph/0507494; F. Piacentini et al., arXiv:astro-ph/0507507; arXiv:astro-ph/0507514.

    Google Scholar 

  16. E. Komatsu et al., arXiv:0803.0547.

    Google Scholar 

  17. E. Komatsu et al., arXiv:1001.4538.

    Google Scholar 

  18. A. Lewis and S. Bridle, Phys. Rev. D66 (2002) 103511, available from http://cosmologist.info.

  19. A. Lewis, A. Challinor and A. Lasenby, Astrophys. J. 538 (2000) 473 [arXiv:astro-ph/ 9911177].

    ADS  Google Scholar 

  20. P. Loren-Aguilar, E. Garcia-Berro, J. Isern and Yu. A. Kubyshin, Class. Quant. Grav. 20 (2003) 3885 [arXiv:astro-ph/0309722].

    Article  ADS  MATH  Google Scholar 

  21. C.J.A.P. Martins, E. Menegoni, S. Galli, G. Mangano and A. Melchiorri, Phys. Rev. D82 (2010) 023532.

    ADS  Google Scholar 

  22. C.J.A.P. Martins et al., Phys. Lett. B585 (2004) 29 [arXiv:astro-ph/0302295]; G. Rocha et al., Mon. Not. Roy. Astron. Soc. 352 (2004) 20.

    Google Scholar 

  23. E. Menegoni, S.Galli, J. Bartlett, C.J.A.P. Martins and A. Melchiorri, Phys. Rev. D80 (2009) 087302.

    ADS  Google Scholar 

  24. E. Menegoni et al., I.J.M.P. D19 (2010) 507.

    Google Scholar 

  25. P.J. Mohr and B.N. Taylor, Rev. Mod. Phys., 72 (2000) 351.

    Article  ADS  MATH  Google Scholar 

  26. M. Nakashima, R. Nagata and J. Yokoyama, Prog. Theor. Phys. 120 (2008) 1207 [arXiv:0810.1098].

    Article  ADS  Google Scholar 

  27. P.J.E. Peebles, Astrophys. J. 153 (1968) 1.

    Article  ADS  Google Scholar 

  28. O. Pisanti et al., Comput. Phys. Commun. 178 (2008) 956 [arXiv:0705.0290].

    Article  ADS  Google Scholar 

  29. C.L. Reichardt et al., [arXiv:0801.1491].

    Google Scholar 

  30. A.C.S. Readhead et al., Astrophys. J. 609 (2004) 498.

    Article  ADS  Google Scholar 

  31. A.G. Riess et al., Astrophys. J. Suppl. 183 (2009) 109 [arXiv:0905.0697].

    Article  ADS  Google Scholar 

  32. S. Seager, D.D. Sasselov and D. Scott, Astrophys. J. 523 (1999) 1, astro-ph/9909275.

    Google Scholar 

  33. S. Seager, D.D. Sasselov and D. Scott, Astrophys. J. Suppl. 128 (2000) 407 [arXiv:astro-ph/9912182].

    Article  ADS  Google Scholar 

  34. U. Seljak, N. Sugiyama, M. White and M. Zaldarriaga, astro-ph/0306052

    Google Scholar 

  35. P.D. Serpico et al., JCAP 0412 (2004) 010 [astro-ph/0408076].

    Google Scholar 

  36. P. Stefanescu, New Astron. 12 (2007) 635 [arXiv:0707.0190].

    Google Scholar 

  37. E.R. Switzer and C.M. Hirata, Phys. Rev. D77 (2008) 083006 [arXiv:astro-ph/0702143]; C.M. Hirata and E.R. Switzer, Phys. Rev. D77 (2008) 083007 [arXiv:astro-ph/0702144].

    Google Scholar 

  38. J.-P. Uzan, Reviews of Modern Physics, 75 (2003) 403; J.-P. Uzan, arXiv:1009.5514

    Google Scholar 

  39. O. Zahn and M. Zaldarriaga, Phys. Rev. D67 (2003) 063002 [arXiv:astro-ph/0212360].

    Google Scholar 

  40. Ya. B. Zel’dovich, V.G. Kurt and R.A. Sunyaev, Zh. Eksp. Teoret. Fiz. 55 (1968) 278, English translation: Sov. Phys. JETP. 28 (1969) 146.

    Google Scholar 

Download references

Acknowledgements

The work of C.M. is funded by a Ciência2007 Research Contract, supported by FSE and POPH-QREN funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Galli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Galli, S., Martins, C.J.A.P., Melchiorri, A., Menegoni, E. (2011). Testing the Variation of Fundamental Constants with the CMB. In: Martins, C., Molaro, P. (eds) From Varying Couplings to Fundamental Physics. Astrophysics and Space Science Proceedings. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19397-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19397-2_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19396-5

  • Online ISBN: 978-3-642-19397-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics