Skip to main content

Dating of Sea-Level Palaeo-Markers

  • Chapter
  • First Online:
Building the Cape Verde Islands

Part of the book series: Springer Theses ((Springer Theses))

  • 413 Accesses

Abstract

Consider the nature and probable age range of the palaeo-markers of sea-level in Cape Verde. It is reasonable to assume that most of the marine sediments intercalated in the volcanostratigraphic sequence of the islands will have an age between the Oligocene/Miocene and the Quaternary. Furthermore, the majority of these sediments will probably lie in the even more restricted interval represented by the Late Miocene and the Plio-Pleistocene, since seven of the ten Cape Verdean islands are probably younger than 10–12 Ma. Hence, the in-sequence sediments (through their fossils) are potentially datable with SIS and lie within the 1–40 Ma interval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elderfield, H. (1986). Strontium isotope stratigraphy. Palaeogeography, Palaeoclimatology, Palaeoecology , 57(1), 71–90.

    Article  Google Scholar 

  2. Veizer, J. (1989). Strontium isotopes in seawater through time. Annual Review of Earth and Planetary Sciences , 17(1), 141–167.

    Article  Google Scholar 

  3. McArthur, J. (1994). Recent trends in strontium isotope stratigraphy. Terra Nova , 6(4), 331–358.

    Article  Google Scholar 

  4. McArthur, J., Howarth, R., & Bailey, T. (2001). Strontium isotope stratigraphy: LOWESS Version 3: Best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. The Journal of Geology , 109(2), 155–170.

    Article  Google Scholar 

  5. McArthur, J., Donovan, D., Thirlwall, M., Fouke, B., & Mattey, D. (2000). Strontium isotope profile of the early Toarcian (Jurassic) oceanic anoxic event, the duration of ammonite biozones, and belemnite palaeotemperatures. Earth and Planetary Science Letters , 179(2), 269–285.

    Article  Google Scholar 

  6. Edwards, R., Gallup, C., & Cheng, H. (2003). Uranium-series dating of marine and lacustrine carbonates. Reviews in Mineralogy and Geochemistry , 52(1), 363–405.

    Article  Google Scholar 

  7. McDougall, I., & Harrison, T. (1999). Geochronology and thermochronology by the 40Ar/39Ar method. New York: Oxford University Press.

    Google Scholar 

  8. Hess, J., Bender, M., & Schilling, J. (1986). Evolution of the ratio of strontium-87 to strontium-86 in seawater from Cretaceous to present. Science , 231(4741), 979–984.

    Article  Google Scholar 

  9. Howarth, R., & McArthur, J. (1997). Statistics for strontium isotope stratigraphy: a robust LOWESS fit to the marine Sr-isotope curve for 0 to 206 Ma, with look-up table for derivation of numeric age. The Journal of Geology , 105(4), 441–456.

    Article  Google Scholar 

  10. Veizer, J., Buhl, D., Diener, A., Ebneth, S., Podlaha, O., Bruckschen, P., et al. (1997). Strontium isotope stratigraphy: Potential resolution and event correlation. Palaeogeography Palaeoclimatology Palaeoecology , 132(1), 65–78.

    Article  Google Scholar 

  11. Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., et al. (1999). 87Sr/86Sr, \(\delta\) 13C and \(\delta\) 18O evolution of Phanerozoic seawater. Chemical Geology , 161(1–3), 59–88.

    Article  Google Scholar 

  12. Vance, D., Teagle, D., & Foster, G. (2009). Variable Quaternary chemical weathering fluxes and imbalances in marine geochemical budgets. Nature , 458(7237), 493–496.

    Article  Google Scholar 

  13. Dingle, R., McArthur, J., & Vroon, P. (1997). Oligocene and Pliocene interglacial events in the Antarctic Peninsula dated using strontium isotope stratigraphy. Journal of the Geological Society , 154(2), 257–264.

    Article  Google Scholar 

  14. Bailey, T., McArthur, J., Prince, H., & Thirlwall, M. (2000). Dissolution methods for strontium isotope stratigraphy: whole rock analysis. Chemical Geology , 167(3–4), 313–319.

    Article  Google Scholar 

  15. Lu, F. (2008). Pristine or altered: low-Mg calcite shells survived from massive dolomitization? A case study from Miocene carbonates. Geo-Marine Letters , 28(5), 339–349.

    Article  Google Scholar 

  16. McArthur, J., Kennedy, W., Chen, M., Thirlwall, M., & Gale, A. (1994). Strontium isotope stratigraphy for Late Cretaceous time: direct numerical calibration of the Sr isotope curve based on the US Western Interior. Palaeogeography, Palaeoclimatology, Palaeoecology , 108(1–2), 95–119.

    Article  Google Scholar 

  17. Veizer, J. (1983). Trace elements and isotopes in sedimentary carbonates. Reviews in Mineralogy and Geochemistry , 11(1), 265–299.

    Google Scholar 

  18. Morrison, J., & Brand, U. (1988). An evaluation of diagenesis and chemostratigraphy of Upper Cretaceous molluscs from the Canadian Interior Seaway. Chemical Geology , 72(3), 235–248.

    Google Scholar 

  19. Brand, U. (1991). Strontium isotope diagenesis of biogenic aragonite and low-Mg calcite. Geochimica et Cosmochimica Acta , 55(2), 505–513.

    Article  Google Scholar 

  20. Stoll, H., & Schrag, D. (1998). Effects of Quaternary sea level cycles on strontium in seawater. Geochimica et Cosmochimica Acta , 62(7), 1107–1118.

    Article  Google Scholar 

  21. Lorrain, A., Gillikin, D., Paulet, Y., Chauvaud, L., Le Mercier, A., Navez, J., & Andre, L. (2005). Strong kinetic effects on Sr/Ca ratios in the calcitic bivalve Pecten maximus. Geology , 33(12), 965–968.

    Article  Google Scholar 

  22. Bernoulli, D., Hottinger, L., Spezzaferri, S., & Stille, P. (2007). Miocene shallow-water limestones from São Nicolau (Cabo Verde): Caribbean-type benthic fauna and time constraints for volcanism. Swiss Journal of Geosciences , 100(2), 215–225.

    Article  Google Scholar 

  23. Serralheiro, A., & Ubaldo, M. (1979). Estudo estratigráfico dos sedimentos do Campo da Preguiça ilha de S. Nicolau (Cabo Verde). Garcia de Orta, Serviços Geológicos , 3(1–2), 75–82.

    Google Scholar 

  24. Macedo, J., Serralheiro, A., & Silva, L. (1988). Notícia Explicativa da Carta Geológica da Ilha de S Nicolau (Cabo Verde) na escala de 1:50000. Garcia de Orta, Serviços Geológicos , 11(1–2), 1–32.

    Google Scholar 

  25. Duprat, H., Friis, J., Holm, P., Grandvuinet, T., & Sørensen, R. (2007). The volcanic and geochemical development of São Nicolau, Cape Verde Islands: Constraints from field and 40Ar/39Ar evidence. Journal of Volcanology and Geothermal Research , 162(1–2), 1–19.

    Article  Google Scholar 

  26. Sun, S., & McDonough, W. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society London Special Publications , 42(1), 313–345.

    Article  Google Scholar 

  27. Davies, G., Norry, M., Gerlach, D., & Cliff, R. (1989). A combined chemical and Pb-Sr-Nd isotope study of the Azores and Cape Verde hot spots; the geodynamic implications. Geological Society of London Special Publications , 42(1), 231–255.

    Article  Google Scholar 

  28. Bourdon, B., Turner, S., Henderson, G., & Lundstrom, C. (2003). Introduction to U-series geochemistry. Reviews in Mineralogy and Geochemistry , 52(1), 1–21.

    Article  Google Scholar 

  29. Stirling, C., Lee, D., Christensen, J., & Halliday, A. (2000). High-precision in situ 238U–234U–230Th isotopic analysis using laser ablation multiple-collector ICPMS. Geochimica et Cosmochimica Acta , 64(21), 3737–3750.

    Article  Google Scholar 

  30. Hoffmann, D., Spotl, C., & Mangini, A. (2009). Micromill and in situ laser ablation sampling techniques for high spatial resolution MC-ICPMS U-Th dating of carbonates. Chemical Geology , 259(3–4), 253–261.

    Article  Google Scholar 

  31. Stirling, C., Esat, T., Lambeck, K., & McCulloch, M. (1998). Timing and duration of the Last Interglacial: evidence for a restricted interval of widespread coral reef growth. Earth and Planetary Science Letters , 160(3–4), 745–762.

    Article  Google Scholar 

  32. Esat, T., & Yokoyama, Y. (2006). Variability in the uranium isotopic composition of the oceans over glacial–interglacial timescales. Geochimica et Cosmochimica Acta , 70(16), 4140–4150.

    Article  Google Scholar 

  33. Renne, P., Swisher, C., Deino, A., Karner, D., Owens, T., & DePaolo, D. (1998). Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology , 145(1–2), 117–152.

    Article  Google Scholar 

  34. Kelley, S. (1995). Ar-Ar dating by laser microprobe. In P. Potts, F. Bowles, S. Reed, & M. Cave (Eds.), Microprobe techniques in the earth sciences, chap. 8 (pp. 327–358). London, UK: Chapman & Hall.

    Google Scholar 

  35. Kelley, S. (2002). Excess argon in K–Ar and Ar–Ar geochronology. Chemical Geology , 188(1–2), 1–22.

    Article  Google Scholar 

  36. Serralheiro, A. (1976). A Geologia da Ilha de Santiago (Cabo Verde). Boletim do Museu e Laboratorio Mineralógico e Geológico da Faculdade de Ciências, 14, 157–369.

    Google Scholar 

  37. Silva, L., Le Bas, M., & Robertson, A. (1981). An oceanic carbonatite volcano on Santiago, Cape Verde Islands. Nature , 294(5842), 644–645.

    Article  Google Scholar 

  38. Ramalho, R., Helffrich, G., Schmidt, D., & Vance, D. (2010). Tracers of uplift and subsidence in the Cape Verde Archipelago. Journal of the Geological Society , 167(3), 519–538.

    Google Scholar 

  39. Holm, P., Wilson, J. R., Christensen, B., Hansen, L., Hansen, S., Khein, K. M., et al. (2006). Sampling the Cape Verde plume: Evolution of melt compositions on Santo Antão, Cape Verde Islands. Journal of Petrology , 47(1), 145–189.

    Article  Google Scholar 

  40. Kuiper, K., Deino, A., Hilgen, F., Krijgsman, W., Renne, P., Wijbrans, J. (2008). Synchronizing rock clocks of Earth history. Science , 320(5875), 500–504.

    Article  Google Scholar 

  41. Holm, P., Grandvuinet, T., Friis, J., Wilson, J. R., Barker, A. K., & Plesner, S. (2008). An 40Ar-39Ar study of the Cape Verde hot spot: Temporal evolution in a semistationary plate environment. Journal of Geophysical Research (Solid Earth), 113(B8), B08201.

    Article  Google Scholar 

  42. Torres, P., Silva, L., Serralheiro, A., Tassinari, C., & Munhá, J. (2002). Enquadramento geocronológico pelo método K/Ar das principais sequências vulcano-estratigráficas da Ilha do Sal - Cabo Verde. Garcia de Orta. Serviços Geológicos, 18(1–2), 9–13.

    Google Scholar 

  43. Mitchell, J., Bas, M. L., Zielonka, J., & Furnes, H. (1983). On dating the magmatism of Maio, Cape Verde Islands. Earth and Planetary Science Letters, 64(1), 61–76.

    Article  Google Scholar 

  44. Bernard-Griffiths, J., Cantagrel, J.-M., Alves, C., Mendes, F., Serralheiro, A., & Macedo, J. (1975). Geochronologie: Donnés radiometriques potassium-argon sur quelques formations magmatiques des îlles de l’archipel du Cap Vert CR. Seances Academy of Science Series D, 280, 2429–2432.

    Google Scholar 

  45. Plesner, S., Holm, P. M., & Wilson, J. R. (2002). 40Ar-39Ar geochronology of Santo Antão, Cape Verde Islands. Journal of Volcanology and Geothermal Research, 120(1–2), 103–121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Alexandre dos Santos Ramalho .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ramalho, R. (2011). Dating of Sea-Level Palaeo-Markers. In: Building the Cape Verde Islands. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19103-9_6

Download citation

Publish with us

Policies and ethics