Skip to main content

Artificial Zinc Finger Peptides: A Promising Tool in Biotechnology and Medicine

  • Chapter
Transcription Factors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 166))

  • 433 Accesses

Abstract

Since their first description about two decades ago, zinc finger DNA-binding proteins have constantly stimulated the creativity of scientists. In particular, the high versatility and modularity of the zinc finger domains make them optimal building blocks for constructing artificial transcription factors potentially able to control the expression of any desired gene in cells and organisms. Disease-related genes can be either turned off or enhanced for the purpose of treating conditions such as genetic disease, cancer or viral infection. Alternatively, the expression of beneficial genes can be boosted to generate animals or plants with advantageous characteristics. Moreover, zinc finger peptides can further expand the number of possible applications on the basis of their peculiar capability to specifically bind RNA. The opportunity to re-program the expression of specific genes at will represents a powerful tool in basic science, biotechnology and molecular medicine. In this chapter, we will focus on the different approaches followed to design and to deliver artificial zinc finger transcription factors with the final aim of approaching functional genomics, phenotypic engineering and human gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ansari AZ (2003) Fingers reach for the genome. Nat Biotechnol 21:242–243

    Article  PubMed  CAS  Google Scholar 

  • Bae KH, Do KY, Shin HC, Hwang MS, Ryu EH, Park KS, Yang HY, Lee OK, Lee Y, Park J, Sun KH, Kim HW, Yeh BI, Lee HW, Hyung SS, Yoon J, Seol W, Kim JS (2003) Human zinc fingers as building blocks in the construction of artificial transcription factors. Nat Biotechnol 21:275–280

    Article  PubMed  CAS  Google Scholar 

  • Bartsevich VV, Juliano RL (2000) Regulation of the MDR1 gene by transcriptional repressors selected using peptide combinatorial libraries. Mol Pharmacol 58:1–10

    PubMed  CAS  Google Scholar 

  • Beerli RR, Segal OJ, Dreier B, Barbas CF3 (1998) Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc Natl Acad Sci USA 95:14628–14633

    Article  PubMed  CAS  Google Scholar 

  • Beerli RR, Dreier B, Barbas CF, III (2000a) Positive and negative regulation of endogenous genes by designed transcription factors. Proc Natl Acad Sci USA 97:1495–1500

    Article  PubMed  CAS  Google Scholar 

  • Beerli RR, Schopfer U, Dreier B, Barbas CF, III (2000b) Chemically regulated zinc finger transcription factors. J Biol Chem 275:32617–32627

    Article  PubMed  CAS  Google Scholar 

  • Beerli RR, Barbas CF, III (2002) Engineering polydactyl zinc-finger transcription factors. Nat Biotechnol 20:135–141

    Article  PubMed  CAS  Google Scholar 

  • Blancafort P, Magnenat L, Barbas CF (2003) Scanning the human genome with combinatorial transcription factor libraries. Nat Biotechnol 21:269–274

    Article  PubMed  CAS  Google Scholar 

  • Chandrasegaran S, Smith J (1999) Chimeric restriction enzymes: what is next? Biol Chem 380:841–848

    Article  PubMed  CAS  Google Scholar 

  • Choo Y, Klug A (1994a) Selection of DNA binding sites for zinc fingers using rationally randomized DNA reveals coded interactions. Proc Natl Acad Sci USA 91:11168–11172

    Article  PubMed  CAS  Google Scholar 

  • Choo Y, Klug A (1994b) Toward a code for the interactions of zinc fingers with DNA: selection of randomized fingers displayed on phage. Proc Natl Acad Sci USA 91:11163–11167

    Article  PubMed  CAS  Google Scholar 

  • Choo Y, Sanchez-Garcia I, Klug A (1994) In vivo repression by a site-specific DNA-binding protein designed against an oncogenic sequence. Nature 372:642–645

    Article  PubMed  CAS  Google Scholar 

  • Choo Y, Klug A (1995) Designing DNA-binding proteins on the surface of filamentous phage. Curr Opin Biotechnol 6:431–436

    Article  PubMed  CAS  Google Scholar 

  • Choo Y, Klug A (1997) Physical basis of a protein-DNA recognition code. Curr Opin Struct Biol 7:117–125

    Article  PubMed  CAS  Google Scholar 

  • Choo Y, Isalan M (2000) Advances in zinc finger engineering. Curr Opin Struct Biol 10:411–416

    Article  PubMed  CAS  Google Scholar 

  • Corbi N, Perez M, Maione R, Passananti C (1997) Synthesis of a new zinc finger peptide; comparison of its ‘code’ deduced and ‘CASting’ derived binding sites. FEBS Lett 417:71–74

    Article  PubMed  CAS  Google Scholar 

  • Corbi N, Libri V, Fanciulli M, Passananti C (1998) Binding properties of the artificial zinc fingers coding gene Sint1. Biochem Biophys Res Commun 253:686–692

    Article  PubMed  CAS  Google Scholar 

  • Corbi N, Libri V, Fanciulli M, Tinsley JM, Davies KE, Passananti C (2000) The artificial zinc finger coding gene’ Jazz’ binds the utrophin promoter and activates transcription. Gene Ther 7:1076–1083

    Article  PubMed  CAS  Google Scholar 

  • Desjarlais, Berg JM (1992a) Redesigning the DNA-binding specificity of a zinc finger protein: a data base-guided approach. Proteins 13:272

    Article  PubMed  CAS  Google Scholar 

  • Desjarlais JR, Berg JM (1992b) Redesigning the DNA-binding specificity of a zinc finger protein: a data base-guided approach. Proteins 12:101–104

    Article  PubMed  CAS  Google Scholar 

  • Desjarlais JR, Berg JM (1992c) Toward rules relating zinc finger protein sequences and DNA binding site preferences. Proc Natl Acad Sci USA 89:7345–7349

    Article  PubMed  CAS  Google Scholar 

  • Desjarlais JR, Berg JM (1993) Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins. Proc Natl Acad Sci USA 90:2256–2260

    Article  PubMed  CAS  Google Scholar 

  • Dreier B, Beerli RR, Segal DJ, Flippin JD, Barbas CF3 (2001) Development of zinc finger domains for recognition of the 5′-ANN-3′ family of DNA sequences and their use in the construction of artificial transcription factors. J BiolChem 276:29466–29478

    CAS  Google Scholar 

  • el Baradi T, Pieler T (1991) Zinc finger proteins: what we know and what we would like to know. Mech Dev 35:155–169

    Article  PubMed  Google Scholar 

  • Elrod-Erickson M, Benson TE, Pabo CO (1998) High-resolution structures of variant Zif268-DNA complexes: implications for understanding zinc finger-DNA recognition. Structure 6:451–464

    Article  PubMed  CAS  Google Scholar 

  • Falke D, Fisher M, Ye D, Juliano RL (2003) Design of artificial transcription factors to selectively regulate the pro-apoptotic bax gene. Nucleic Acids Res 31: e10

    Article  PubMed  CAS  Google Scholar 

  • Falke D, Juliano RL (2003) Selective gene regulation with designed transcription factors: implications for therapy. Curr Opin Mol Ther 5:161–166

    PubMed  CAS  Google Scholar 

  • Friesen WJ, Darby MK (2001) Specific RNA binding by a single C2H2 zinc finger. J Biol Chem 276:1968–1973

    Article  PubMed  CAS  Google Scholar 

  • Frommer WB, Beachy R (2003) Plant biotechnology. A future for plant biotechnology? Naturally! Curr Opin Plant Biol. 6:147–149

    Article  Google Scholar 

  • Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89:5547–5551

    Article  PubMed  CAS  Google Scholar 

  • Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766–1769

    Article  PubMed  CAS  Google Scholar 

  • Greisman HA, Pabo CO (1997) A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science 275:657–661

    Article  PubMed  CAS  Google Scholar 

  • Guan X, Stege J, Kim M, Dahmani Z, Fan N, Heifetz P, Barbas CF, III, Briggs SP (2002) Heritable endogenous gene regulation in plants with designed polydactyl zinc finger transcription factors. Proc Natl Acad Sci USA 99:13296–13301

    Article  PubMed  CAS  Google Scholar 

  • Imanishi M, Hori Y, Nagaoka M, Sugiura Y (2001) Design of novel zinc finger proteins: towards artificial control of specific gene expression. Eur J Pharm Sci 13:91–97

    Article  PubMed  CAS  Google Scholar 

  • Isalan M, Choo Y, Klug A (1997) Synergy between adjacent zinc fingers in sequence-specific DNA recognition. Proc Natl Acad Sci USA 94:5617–5621

    Article  PubMed  CAS  Google Scholar 

  • Isalan M, Klug A, Choo Y (2001) A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-l promoter. Nat Biotechnol 19:656–660

    Article  PubMed  CAS  Google Scholar 

  • Jamieson AC, Kim SH, Wells JA (1994) In vitro selection of zinc fingers with altered DNA-binding specificity. Biochemistry 33:5689–5695

    Article  PubMed  CAS  Google Scholar 

  • Jamieson AC, Miller JC, Pabo CO (2003) Drug discovery with engineered zinc-finger proteins. Nat Rev Drug Discov 2:361–368

    Article  PubMed  CAS  Google Scholar 

  • Joung JK, Ramm EI, Pabo CO (2000) A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions. Proc Natl Acad Sci USA 97:7382–7387

    Article  PubMed  CAS  Google Scholar 

  • Jouvenot Y, Ginjala V, Zhang L, Liu PQ, Oshimura M, Feinberg AP, Wolffe AP, Ohlsson R, Gregory PD (2003) Targeted regulation of imprinted genes by synthetic zinc-finger transcription factors. Gene Ther 10:513–522

    Article  PubMed  CAS  Google Scholar 

  • Kamiuchi T, Abe E, Imanishi M, Kaji T, Nagaoka M, Sugiura Y (1998) Artificial nine zinc-finger peptide with 30 base pair binding sites. Biochemistry 37:13827–13834

    Article  PubMed  CAS  Google Scholar 

  • Kang JS, Kim JS (2000) Zinc finger proteins as designer transcription factors. J Biol Chem 275:8742–8748

    Article  PubMed  CAS  Google Scholar 

  • Lee DK, Seol W, Kim JS (2003) Custom DNA-binding proteins and artificial transcription factors. Curr Top Med Chem 3:645–657

    Article  PubMed  CAS  Google Scholar 

  • Leon O, Roth M (2000) Zinc fingers: DNA binding and protein-protein interactions. Biol Res 33:21–30

    Article  PubMed  CAS  Google Scholar 

  • Levine M, Tjian R (2003) Transcription regulation and animal diversity. Nature 424:147–151

    Article  PubMed  CAS  Google Scholar 

  • Liu PQ, Rebar EJ, Zhang L, Liu Q, Jamieson AC, Liang Y, Qi H, Li PX, Chen B, Mendel MC, Zhong X, Lee YL, Eisenberg SP, Spratt SK, Case CC, Wolffe AP (2001) Regulation of an endogenous locus using a panel of designed zinc finger proteins targeted to accessible chromatin regions. Activation of vascular endothelial growth factor A. J Biol Chem 276:11323–11334

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Segal DJ, Ghiara JB, Barbas CF3 (1997) Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci USA 94:5525–5530

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Xia Z, Zhong X, Case CC (2002) Validated zinc finger protein designs for all 16 GNN DNA triplet targets. J Biol Chem 277:3850–3856

    Article  PubMed  CAS  Google Scholar 

  • McNamara AR, Ford KG (2000) A novel four zinc-finger protein targeted against p190(BcrAb1) fusion oncogene cDNA: utilisation of zinc-finger recognition codes. Nucleic Acids Res 28:4865–4872

    Article  PubMed  CAS  Google Scholar 

  • McNamara AR, Hurd PJ, Smith AE, Ford KG (2002) Characterisation of site-biased DNA methyhransferases: specificity, affinity and subsite relationships. Nucl Acids Res 30:3818–3830

    Article  PubMed  CAS  Google Scholar 

  • Miller J, McLachlan AD, Klug A (1985) Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4:1609–1614

    PubMed  CAS  Google Scholar 

  • Nardelli J, Gibson TJ, Vesque C, Charnay P (1991) Base sequence discrimination by zinc-finger DNA-binding domains. Nature 349:175–178

    Article  PubMed  CAS  Google Scholar 

  • Nardelli J, Gibson T, Charnay P (1992) Zinc finger-DNA recognition: analysis of base specificity by site-directed mutagenesis. Nucl Acids Res 20:4137–4144

    Article  PubMed  CAS  Google Scholar 

  • Nomura W, Nagaoka M, Shiraishi Y, Sugiura Y (2003) Influence of TFIIIA-type linker at the N-or C-terminal of nine-zinc finger protein on DNA-binding site. Biochem Biophys Res Commun 300:87–92

    Article  PubMed  CAS  Google Scholar 

  • Pabo CO, Sauer RT (1992) Transcription factors: structural families and principles of DNA recognition. Annu Rev Biochem 61:1053–1095

    Article  PubMed  CAS  Google Scholar 

  • Pabo CO, Nekludova L (2000) Geometric analysis and comparison of protein-DNA interfaces: why is there no simple code for recognition? J Mol Biol 301:597–624

    Article  PubMed  CAS  Google Scholar 

  • Pabo CO, Peisach E, Grant RA (2001) Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70:313–340

    Article  PubMed  CAS  Google Scholar 

  • Pandolfi PP (2001) Transcription therapy for cancer. Oncogene 20:3116–3127

    Article  PubMed  CAS  Google Scholar 

  • Papworth M, Moore M, Isalan M, Minczuk M, Choo Y, Klug A (2003) Inhibition of herpes simplex virus 1 gene expression by designer zinc-finger transcription factors. Proc Natl Acad Sci USA 100:1621–1626

    Article  PubMed  CAS  Google Scholar 

  • Park KS, Lee DK, Lee H, Lee Y, Jang YS, Kim YH, Yang HY, Lee SI, Seol W, Kim JS (2003) Phenotypic alterat ion of eukaryotic cells using randomized libraries of artificial transcription factors. Nat Biotechnol 21:1208–1214

    Article  PubMed  CAS  Google Scholar 

  • Pasqualini R, Barbas CF, III, Arap W (2002) Vessel maneuvers: zinc fingers promote angiogenesis. Nat Med 8:1353–1354

    Article  PubMed  CAS  Google Scholar 

  • Passananti C, Corbi N, Paggi MG, Russo MA, Perez M, Cotelli F, Stefanini M, Amati P (1995) The product of Zfp59 (Mfg2), a mouse gene expressed at the spermatid stage of spermatogenesis, accumulates in spermatozoa nuclei. Cell Growth Differ 6:1037–1044

    PubMed  CAS  Google Scholar 

  • Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252:809–817

    Article  PubMed  CAS  Google Scholar 

  • Pengue G, Lania L (1996) Kruppel-associated box-mediated repression of RNA polymerase II promoters is influenced by the arrangement of basal promoter elements. Proc Natl Acad Sci USA 93:1015–1020

    Article  PubMed  CAS  Google Scholar 

  • Perez M, Rompato G, Corbi N, De Gregorio L, Dragani TA, Passananti C (1996) Zfp60, a mouse zinc finger gene expressed transiently during in vitro muscle differentiation. FEBS Lett 387:117–121

    Article  PubMed  CAS  Google Scholar 

  • Pollock R, Giel M, Linher K, Clackson T (2002) Regulation of endogenous gene expression with a small-molecule dimerizer. Nat Biotechnol 20:729–733

    Article  PubMed  CAS  Google Scholar 

  • Pomerantz JL, Wolfe SA, Pabo CO (1998) Structure-based design of a dimeric zinc finger protein. Biochemistry 37:965–970

    Article  PubMed  CAS  Google Scholar 

  • Rebar EJ, Pabo CO (1994) Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. Science 263:671–673

    Article  PubMed  CAS  Google Scholar 

  • Rebar EJ, Huang Y, Hickey R, Nath AK, Meoli D, Nath S, Chen B, Xu L, Liang Y, Jamieson AC, Zhang L, Spratt SK, Case CC, Wolffe A, Giordano FJ (2002) Induction of angiogenesis in a mouse model using engineered transcription factors. Nat Med 8:1427–1432

    Article  PubMed  CAS  Google Scholar 

  • Ren D, Collingwood TN, Rebar EJ, Wolffe AP, Camp HS (2002) PPARgamma knockdown by engineered transcription factors: exogenous PPARgamma2 but not PPARgammal reactivates adipogenesis. Genes Dev 16:27–32

    Article  PubMed  CAS  Google Scholar 

  • Reynolds L, Ullman C, Moore M, Isalan M, West MJ, Clapham P, Klug A, Choo Y (2003) Repression of the HIV-l 5′ LTR promoter and inhibition of HIV-l replication by using engineered zinc-finger transcription factors. Proc Natl Acad Sci USA 100:1615–1620

    Article  PubMed  CAS  Google Scholar 

  • Sanchez JP, Ullman C, Moore M, Choo Y, Chua NH (2002) Regulation of gene expression in Arabidopsis thaliana by artificial zinc finger chimeras. Plant Cell Physiol 43:1465–1472

    Article  PubMed  CAS  Google Scholar 

  • Segal DJ, Dreier B, Beerli RR, Barbas CF3 (1999) Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc Natl Acad Sci USA 96:2758–2763

    Article  PubMed  CAS  Google Scholar 

  • Segal DJ, Barbas CF3 (2000) Design of novel sequence-specific DNA-binding proteins. Curr Opin Chem Biol 4:34–39

    Article  PubMed  CAS  Google Scholar 

  • Segal DJ (2002) The use of zinc finger peptides to study the role of specific factor binding sites in the chromatin environment. Methods 26:76–83

    Article  PubMed  CAS  Google Scholar 

  • Segal DJ, Beerli RR, Blancafort P, Dreier B, Effertz K, Huber A, Koksch B, Lund CV, Magnenat L, Valente D, Barbas CF3 (2003a) Evaluation of a modular strategy for the construction of novel polydactyl zinc finger dna-binding proteins. Biochemistry 42:2137–2148

    Article  PubMed  CAS  Google Scholar 

  • Segal DJ, Stege JT, Barbas CF (2003b) Zinc fingers and a green thumb: manipulating gene expression in plants. Curr Opin Plant Biol 6:163–168

    Article  PubMed  CAS  Google Scholar 

  • Sera T, Uranga C (2002) Rational design of artificial zinc-finger proteins using a nondegenerate recognition code table. Biochemistry 41:7074–7081

    Article  PubMed  CAS  Google Scholar 

  • Snowden AW, Gregory PD, Case CC, Pabo CO (2002) Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr Biol 12:2159–2166

    Article  PubMed  CAS  Google Scholar 

  • Somia N, Verma IM (2000) Gene therapy: trials and tribulations. Nat Rev Genet 1:91–99

    Article  PubMed  CAS  Google Scholar 

  • Schmiedeskamp M and Kievit RE (1994) Zinc finger diversity. Curr Opin Struct Biol 4:28/35

    Article  Google Scholar 

  • Stege JT, Guan X, Ho T, Beachy RN, Barbas CF, III (2002) Controlling gene expression in plants using synthetic zinc finger transcription factors. Plant J 32:1077–1086

    Article  PubMed  CAS  Google Scholar 

  • Tan S, Guschin D, Davalos A, Lee YL, Snowden AW, Jouvenot Y, Zhang HS, Howes K, McNamara AR, Lai A, Ullman C, Reynolds L, Moore M, Isalan M, Berg LP, Campos B, Qi H, Spratt SK, Case CC, Pabo CO, Campisi J, Gregory PD (2003) Zinc-finger protein-targeted gene regulation: genomewide single-gene specificity. Proc Natl Acad Sci USA 100:11997–12002

    Article  PubMed  CAS  Google Scholar 

  • Tinsley JM, Potter AC, Phelps SR, Fisher R, Trickett JI, Davies KE (1996) Amelioration of the dystrophic phenotype of mdx mice using a truncated utrophin transgene. Nature 384:349–353

    Article  PubMed  CAS  Google Scholar 

  • Urnov FD, Rebar EJ (2002) Designed transcription factor s as tools for therapeutics and functional genomics. Biochem Pharmacol 64:919–923

    Article  PubMed  CAS  Google Scholar 

  • Urnov FD, Rebar EJ, Reik A, Pandolfi PP (2002) Designed transcription factors as structural, functional and therapeutic probes of chromatin in vivo. Fourth in review series on chromatin dynamics. EMBO Rep 3:610–615

    Article  PubMed  CAS  Google Scholar 

  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  PubMed  CAS  Google Scholar 

  • Verma IM, Somia N (1997) Gene therapy-promises, problems and prospects. Nature 389:239–242

    Article  PubMed  CAS  Google Scholar 

  • Wolfe SA, Greisman HA, Ramm EI, Pabo CO (1999) Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code. J Mol Biol 285:1917–1934

    Article  PubMed  CAS  Google Scholar 

  • Wolfe SA, Nekludova L, Pabo CO (2000a) DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct 29:183–212

    Article  PubMed  CAS  Google Scholar 

  • Wolfe SA, Ramm EI, Pabo CO (2000b) Combining structure-based design with phage display to create new Cys(2)His(2) zinc finger dimers. Struct Fold Des 8:739–750

    Article  CAS  Google Scholar 

  • Wolfe SA, Grant RA, Elrod-Erickson M, Pabo CO (2001) Beyond the ‘recognition code’: structures of two Cys2His2 zinc finger/TATA box complexes. Structure (Camb) 9: 717–723

    Article  CAS  Google Scholar 

  • Yaghmai R, Cutting GR (2002) Optimized regulation of gene expression using artificial transcription factors. Mol Ther 5:685–694

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Spratt SK, Liu Q, Johnstone B, Qi H, Raschke EE, Jamieson AC, Rebar EJ, Wolffe AP, Case CC (2000) Synthetic zinc finger transcription factor action at an endogenous chromosomal site. Activation of the human erythropoietin gene. J Biol Chem 275: 33850–33860

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Corbi, N., Libri, V., Passananti, C. (2004). Artificial Zinc Finger Peptides: A Promising Tool in Biotechnology and Medicine. In: Gossen, M., Kaufmann, J., Triezenberg, S.J. (eds) Transcription Factors. Handbook of Experimental Pharmacology, vol 166. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18932-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18932-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62361-5

  • Online ISBN: 978-3-642-18932-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics