Skip to main content

Extranuclear Inheritance: Chloroplast Proteomics

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 65))

Abstract

Biology has arrived in the “omics” age. Currently, there is no better justification for the importance of one’s own research field than adding the suffix “omics” to it (Fig. 1). This somewhat unfortunate tendency was initiated with the systematic and high-throughput sequencing of entire genomes for which the term “genomics” was coined. Soon, researchers using systematic approaches to elucidate gene functions felt it important to distinguish between “structural genomics” (i.e. genome sequencing) and “functional genomics” (i.e. elucidation of gene functions; see e.g. Bock and Hippler 2002). What are the criteria for “omics”? Certainly, any “omics” should (1) take a systematic approach and (2) use high-throughput techniques with the ultimate goal of achieving completeness (complete sequence, complete set of RNAs, proteins, metabolites, etc.). From this viewpoint, clearly, some fields are relatively far (e.g. “metabolomics”) or even very far (e.g. “structuromics”) from meeting these criteria and, here, enthusiastic addition of the ending “omics” appears premature (Fig. 1).

The world of “omics” in modern biology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abdallah F, Salamini F, Leister D (2000) A prediction of the size and evolutionary origin of the proteome of chloroplasts of Arabidopsis. Trends Plant Sci 5:141–142

    Article  PubMed  CAS  Google Scholar 

  • Bock R, Hippler M (2002) Extranuclear inheritance: functional genomics in chloroplasts. Progress in botany 63. Springer, Berlin Heidelberg New York, pp 106–131

    Chapter  Google Scholar 

  • Corradini D, Huber CG, Timperio AM, Zolla L (2000) Resolution and identification of the protein components of the photosystem II antenna system of higher plants by reversed-phase liquid chromatography with electrospray-mass spectrometric detection. J Chro-matogr A 886:111–121

    Article  CAS  Google Scholar 

  • Eng J, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989

    Article  CAS  Google Scholar 

  • Ferro M, Salvi D, Riviere-Rolland H, Vermat T, Seigneurin-Berny D, Grunwald D, Garin J, Joyard J, Rolland N (2002) Integral membrane proteins of the chloroplast envelope: identification and subcellular localization of new transporters. Proc Natl Acad Sci USA 99:11487–11492

    Article  PubMed  CAS  Google Scholar 

  • Gavin AC, Bosche M, Krause R, Grandi P et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    Article  PubMed  CAS  Google Scholar 

  • Gomez SM, Nishio JN, Faull KF, Whitelegge JP (2002) The chloroplast grana proteome defined by intact mass measurements from liquid chromatography mass spectrometry. Mol Cell Proteomics 1:46–59

    Article  PubMed  CAS  Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  PubMed  CAS  Google Scholar 

  • Hippler M, Klein J, Fink A, Allinger T, Hoerth P (2001) Towards functional proteomics of membrane protein complexes: analysis of thylakoid membranes from Chlamydomonas reinhardtii. Plant J. 28:595–606

    Article  PubMed  CAS  Google Scholar 

  • Huber CG, Timperio AM, Zolla L (2001) Isoforms of photosystem II antenna proteins in different plant species revealed by liquid chromatography-electrospray ionization mass spectrometry. J Biol Chem 276:45755–45761

    Article  PubMed  CAS  Google Scholar 

  • Imbault P, Wittemer C, Johanningmeier U, Jacobs JD, Howell SH (1988) Structure of the Chlamydomonas reinhardtii cabII-l gene encoding a chlorophyll-a/b-binding protein. Gene 73:397–407

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Tabata S (1997) Complete genome structure of the unicellular cyanobacterium Synechocystis sp. PCC6803. Plant Cell Physiol 38:1171–1176

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136

    Article  PubMed  CAS  Google Scholar 

  • Klose J (1999) Genotypes and phenotypes. Electrophoresis 20:643–652

    Article  PubMed  CAS  Google Scholar 

  • Koller A, Washburn MP, Lange BM, Andon NL, Deciu C, Haynes PA, Hays L, Schieltz D, Ulaszek R, Wei J, Wolters D, Yates JR 3rd (2002) Proteomic survey of metabolic pathways in rice. Proc Natl Acad Sci USA 99:11969–11974

    Article  PubMed  CAS  Google Scholar 

  • Kotani H, Tabata S (1998) Lessons from sequencing of the genome of a unicellular cyanobacterium, Synechocystis SP. PCC6803. Annu Rev Plant Physiol Plant Mol Biol 49:151–171

    Article  PubMed  CAS  Google Scholar 

  • Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, Garvik BM, Yates JR 3rd (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17:676–682

    Article  PubMed  CAS  Google Scholar 

  • Mann M, Wilm M (1994) Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem 66:4390–4399

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99:12246–12251

    Article  PubMed  CAS  Google Scholar 

  • Moseley JL, Allinger T, Herzog S, Hoerth P, Wehinger E, Merchant S, Hippler M (2002) Adaptation to Fe-deficiency requires re-modelling of the photosynthetic apparatus. EMBO J 21:6709–6720

    Article  PubMed  CAS  Google Scholar 

  • O’Farrell P (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    CAS  Google Scholar 

  • Peltier JB, Friso G, Kalume DE, Roepstorff P, Nilsson F, Adamska I, van Wijk KJ (2000) Proteomics of the chloroplast: systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. Plant Cell 12:319–341

    PubMed  CAS  Google Scholar 

  • Peltier JB, Ytterberg J, Liberies DA, Roepstorff P, van Wijk KJ (2001) Identification of a 350-kDa ClpP protease complex with 10 different Clp isoforms in chloroplasts of Arabidopsis thaliana. J Biol Chem 276:16318–16327

    Article  PubMed  CAS  Google Scholar 

  • Peltier JB, Emanuelsson O, Kalume DE, Ytterberg J, Friso G, Rudella A, Liberies DA, Söderberg L, Roepstorff P, von Heijne G, van Wijk KJ (2002) Central functions of the lumenal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction. Plant Cell 14:211–236

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Gygi SP (2001) Proteomics: the move to mixtures. J Mass Spectrom 36:1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3367

    Article  PubMed  CAS  Google Scholar 

  • Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, Wilm M, Seraphin B (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24:218–229

    Article  PubMed  CAS  Google Scholar 

  • Rujan T, Martin W (2001) How many genes in Arabidopsis come from cyanobacteria ? An estimate from 386 protein phylogenies. Trends Genet 17:113–121

    Article  PubMed  CAS  Google Scholar 

  • Santoni V, Molloy M, Rabilloud T (2000) Membrane proteins and proteomics: un amour impossible? Electrophoresis 21:1054–1070

    Article  PubMed  CAS  Google Scholar 

  • Schubert M, Petersson UA, Haas BJ, Funk C, Schroder WP, Kieselbach T (2002) Proteome map of the chloroplast lumen of Arabidopsis thaliana. J Biol Chem 277:8354–8365

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • van Wijk KJ (2000) Proteomics of the chloroplast: experimentation and prediction. Trends Plant Sci 5:420–425

    Article  Google Scholar 

  • Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    Article  PubMed  CAS  Google Scholar 

  • Whitelegge JP, Gundersen CB, Faull KF (1998) Electrospray-ionization mass spectrometry of intact intrinsic membrane proteins. Protein Sci 7:1423–1430

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Subramanian AR (2000) The plastid ribosomal proteins. Identification of all the proteins in the 50S subunit of an organelle ribosome (chloroplast). J Biol Chem 275:28466–28482

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, von Knoblauch K, Subramanian AR (2000) The plastid ribosomal proteins. Identification of all the proteins in the 30S subunit of an organelle ribosome (chloroplast). J Biol Chem 275:28455–28465

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hippler, M., Bock, R. (2004). Extranuclear Inheritance: Chloroplast Proteomics. In: Esser, K., Lüttge, U., Beyschlag, W., Murata, J. (eds) Progress in Botany. Progress in Botany, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18819-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18819-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62306-6

  • Online ISBN: 978-3-642-18819-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics