Skip to main content

Recent Advances in Understanding Plant Invasions

  • Chapter

Part of the book series: Progress in Botany ((BOTANY,volume 65))

Abstract

In the last two decades biological invasions have drawn increasing attention (see e.g., Drake et al. 1989; Lodge 1993; Williamson 1996; Lonsdale 1999; Alpert et al. 2000; Kolar and Lodge 2001). Compared to other subjects of ecological investigation, studies related to biological invasions have almost exploded in number during the last years (Fig. 1).

Increase in the number of published papers on invasive plants between 1990 and 2002 (filled circles, plotted against the left y-axis). The data were obtained by a year-specific search in the ISI WebOfScience database using invasive plant(s) orplant invasion(s) as search terms (for the title and the abstract). Note that not all papers on plant invasions were retrieved by these search terms, nor are papers on other invasive organisms included. To account for the constantly increasing journal coverage by ISI, the development in the number of invasionrelated studies is shown calibrated against the development in the number of ecology-related studies in the same period of time (open squares, plotted against the right y-axis). While the number of ecology-related studies increased fairly linearly there has been an exponential increase in the number of studies related to invasive plants in the last years

The fact that an increasing number of ecologists gets caught up in the problem of biological invasions can be attributed to several reasons. First, biological invasions are increasingly recognized as one of the most important threats to biodiversity (D’Antonio and Vitousek 1992; Vitousek et al. 1997a; Walker and Steffen 1997; Mooney 1999), i.e. biological invasions tend to homogenize the earth’s biota (Lodge 1993; Vitousek et al. 1997b; Mooney 1999; Mack et al. 2000). Second, biological invasions can also pose severe environmental, economic and sometimes even health threats (Vitousek et al. 1997a,b; Mack et al. 2000 and references therein, Pimentel et al. 2000). Invasive species affect native species and ecosystems by competing directly for resources that native species require, by altering ecosystem functions and processes such as nutrient and hydrologic cycles, and fire frequency and/or intensity. There are virtually no natural areas left that have not felt the impact of non-native invaders (Usher 1988). Third, biological invasions represent great natural experiments for the ecologist whose investigation is extremely valuable for the understanding of population spread (Sakai et al. 2001) and community- and landscape-level processes affecting the patterns and abundance of species at large spatial and temporal scales, i.e. scales which are otherwise hardly accessible for experimental ecologists.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams RP, Flournoy LE, Singh RL, Johnson H, Mayeux H (1998) Invasion of grasslands by Juniperus ashei: a new theory based on random amplified polymorphic DNAs (RAPDs). Biochem Syst Ecol 26:371–377

    Article  CAS  Google Scholar 

  • Alpert P, Bone E, Holzapfel C (2000) Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspectives in plant ecology. Evol Syst 3:52–66

    Google Scholar 

  • Amsellem L, Noyer JL, Le Bourgeois T, Hossaert-McKey M (2000) Comparison of genetic diversity of the invasive weed Rubus alceifolius Poir. (Rosaceae) in its native range and in areas of introduction, using amplified fragment length polymorphism (AFLP) markers. Mol Ecol 9:443–455

    Article  PubMed  CAS  Google Scholar 

  • Arenas F, Viejo RM, Fernandez C (2002) Density-dependent regulation in an invasive seaweed: responses at plant and modular levels. J Ecol 90:820–829

    Article  Google Scholar 

  • Asner GP, Beatty SW (1996) Effects of an African grass invasion on Hawaiian shrubland nitrogen biogeochemistry. Plant Soil 186:205–211

    Article  CAS  Google Scholar 

  • Baker HG (1965) Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL (eds) The genetics of colonizing species. Academic Press, New York

    Google Scholar 

  • Baker HG (1974) The evolution of weeds. Annu Rev Ecol Syst 5:1–24

    Article  Google Scholar 

  • Baker HG, Stebbins GL (1965) The genetics of colonizing species. Academic Press, New York

    Google Scholar 

  • Bakker J, Wilson S (2001) Competitive abilities of introduced and native grasses. Plant Ecol 157:117–125

    Article  Google Scholar 

  • Barthell JF, Randall JM, Thorp RW, Wenner AM (2001) Promotion of seed set in yellow star-thistle by honey bees: evidence of an invasive mutualism. Ecol Appl 11:1870–1883

    Article  Google Scholar 

  • Baruch Z, Bilbao B (1999) Effects of fire and defoliation on the life history of native and invader C4 grasses in a Neotropical savanna. Oecologia 119:510–520

    Article  Google Scholar 

  • Baruch Z, Goldstein G (1999) Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii. Oecologia 121:183–192

    Article  Google Scholar 

  • Bastlova D, Kvet J (2002). Differences in dry weight partitioning and flowering phenology between native and non-native plants of purple loosestrife (Lythrum salicaria L.). Flora 197:332–340

    Article  Google Scholar 

  • Bergelson J, Purrington CB (1996) Surveying patterns in the cost of resistance in plants. Am Nat 148:536–558

    Article  Google Scholar 

  • Bishop JG (2002) Early primary succession on Mount St. Helens: impact of insect herbivores on colonizing lupines. Ecology 83:191–202

    Article  Google Scholar 

  • Blossey B, Kamil J (1996) What determines the increased competitive ability of non-indigenous plants? In: Moran VC, Hofmann JH (eds) Proceedings of the IX International Symposium on Biological control of weeds Stellenbosch, South Africa. University of Cape Town, Cape Town, pp 3–9

    Google Scholar 

  • Blossey B, Notzöld R (1995) Evolution of increased competitive ability in invasive nonindi-genous plants: a hypothesis. J Ecol 83:887–889

    Article  Google Scholar 

  • Brooks ML (2002) Peak fire temperatures and effects on annual plants in the Mojave Desert. Ecol Appl 12:1088–1102

    Article  Google Scholar 

  • Brown BJ, Wickstrom CE (1997) Adventitious root production and survival of purple loosestrife (Lythrum salicaria) shoot sections. Ohio J Sci 97:2–4

    Google Scholar 

  • Brown BJ, Mitchell RJ, Graham SA (2002) Competition for pollination between an invasive species (purple loosestrife) and a native congener. Ecology 83(8):2328–2336

    Article  Google Scholar 

  • Buckland SM, Thompson K, Hodgson JG, Grime JP (2001) Grassland invasions: effects of manipulations of climate and management. J Appl Ecol 38:301–309

    Article  Google Scholar 

  • Burke MJW, Grime JP (1996) An experimental study of plant community invasibility. Ecology 77:776–790

    Article  Google Scholar 

  • Buschmann H, Edwards PJ, Dietz H (2002) Research project: does herbivory by slugs influence the invasiveness of perennial Brassicaceae? Bull Geobot Inst ETH 68:73–81

    Google Scholar 

  • Caldwell MM, Richards JH, Johnson DA, Nowak RS, Dzurek RS (1981) Coping with herbivory: photosynthetic capacity and resource allocation in two semiarid Agropyron bunchgrasses. Oecologia 50:14–24

    Article  Google Scholar 

  • Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290:521–523

    Article  PubMed  CAS  Google Scholar 

  • Callaway RM, DeLuca T, Belliveau WM (1999) Herbivores used for biological control may increase the competitive ability of the noxious weed Centaurea maculosa. Ecology 80:1196–1201

    Google Scholar 

  • Callaway RM, Newingham B, Zabinski CA, Mahall BE (2001) Compensatory growth and competitive ability of an invasive weed are enhanced by soil fungi and native neighbours. Ecol Lett 4:429–433

    Article  Google Scholar 

  • Case TJ (1990) Invasion resistance arises in strongly interacting species-rich model competition communities. Proc Natl Acad Sci USA 87:9610–9614

    Article  PubMed  CAS  Google Scholar 

  • Case TJ (1991) Invasion resistance, species build-up and community collapse in model competition communities. In: Gilpin ME, Hanski I (eds) Metapopulation dynamics. Academic Press, London, pp 239–266

    Google Scholar 

  • Case TJ (1996) Global patterns in the establishment of exotic birds. Biol Conserv 78:69–96

    Article  Google Scholar 

  • Chapin FS III, Walker BH, Hobbs RJ, Hooper DU, Lawton JH, Sala OE, Tilman D (1997) Biotic control over the functioning of ecosystems. Science 277:500–503

    Article  CAS  Google Scholar 

  • Chazdon RL (1996) Spatial heterogeneity in tropical forest structure: canopy palms as landscape mosaics. Trends Ecol Evol 11:8–9

    Article  PubMed  CAS  Google Scholar 

  • Chen HJ, Quails RG, Miller GC (2002) Adaptive responses of Lepidium latifolium to soil flooding: biomass allocation, adventitious rooting, aerenchyma formation and ethylene production. Environ Exp Bot 48:119–128

    Article  Google Scholar 

  • Chesson P, Huntly N (1997) The roles of harsh and fluctuating conditions in the dynamics of ecological communities. Am Nat 150:519–553

    Article  PubMed  CAS  Google Scholar 

  • Cohen AN, Carlton JT (1995) Biological study: nonindigenous aquatic species in a United States estuary: a case study of the biological invasions of the San Francisco bay and delta. US Fish and Wildlife Service, Washington DC

    Google Scholar 

  • Connor EG, Faeth SH, Simberloff D, Opler PA (1980) Taxonomic isolation and the accumulation of herbivorous insects: a comparison of introduced and native trees. Ecol Entomol 5:205–211

    Article  Google Scholar 

  • Crawley MJ (1987) What makes a community invasible? In: Gray AJ, Crawley MJ, Edwards PJ (eds) Colonization, succession and stability. Blackwell, Oxford, pp 429–453

    Google Scholar 

  • Crawley MJ, Harvey PH, Purvis A (1996) Comparative ecology of the native and alien floras of the British Isles. Philos Trans R Soc Lond B 351:1251–1259

    Article  Google Scholar 

  • Crawley MJ, Brown SL, Heard MS, Edwards GR (1999) Invasion-resistance in experimental grassland communities: species richness or species identity? Ecol Lett 2:140–148

    Article  Google Scholar 

  • Cronk QCB, Fuller JL (1995) Plant invaders. Chapman and Hall, London

    Google Scholar 

  • D’Antonio CM (1993) Mechanisms controlling invasion of coastal plant communities by the alien succulent Carpobrotus edulis. Ecology 74:83–95

    Article  Google Scholar 

  • D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the fire/grass cycle, and global change. Annu Rev Ecol Syst 23:63–87

    Google Scholar 

  • D’Antonio CM, Dudley TL, Mack M (1999) Disturbance and biological invasions: direct effects and feedbacks. In: Walker LH (ed) Ecosystems of disturbed ground. Elsevier, New York, pp 413–451

    Google Scholar 

  • da Ros N, Ostermeyer R, Roques A, Raimbault JP (1993) Insect damage to cones of exotic conifer species introduced in arboreta. 1. Interspecific variations within the genus Picea. J Appl Entomol 115:113–133

    Article  Google Scholar 

  • Daehler CC (2001) Two ways to be an invader, but one is more suitable for ecology. ESA Bull 82:101–102

    Google Scholar 

  • Daehler CC, Strong DR (1997) Reduced herbivore resistance in introduced smooth cordgrass (Spartina alterniflora) after a century of herbivore-free growth. Oecologia 110:99–108

    Article  Google Scholar 

  • Davis MA, Pelsor M (2001) Experimental support for a resource-based mechanistic model of invasibility. Ecol Lett 4:421–428

    Article  Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534

    Article  Google Scholar 

  • DeBach P, Rosen D (1991) Biological control by natural enemies. Cambridge University Press, Cambridge

    Google Scholar 

  • DeFerrari CM, Naiman RJ (1994) A multi-scale assessment of the occurrence of exotic plants on the Olympic Peninsula, Washington. J Veg Sci 5:247–258

    Article  Google Scholar 

  • DeWalt SJ, Ickes KL, Denslow JS (2001) Test of the release from natural enemies hypothesis using the invasive tropical shrub Clidemia hirta. In: Abstracts of the Ecological Society of America, 86th Annual Meeting. Ecological Society of America, Washington, DC, p 80

    Google Scholar 

  • di Castri F (1989) History of biological invasions with emphasis on the Old World. In: Drake J, di Castri F, Groves R, Kruger F, Mooney HA, Rejmánek M, Williamson M (eds) Biological invasions: a global perspective. Wiley, New York, pp 1–30

    Google Scholar 

  • Dietz H (2002) Plant invasion patches — reconstructing pattern and process by means of herb-chronology. Biol Invasions 4:211–222

    Article  Google Scholar 

  • Dietz H, Steinlein T (1998) The impact of anthropogenic disturbance on life stage transitions and stand regeneration of the invasive alien plant Bunias orientalis L. In: Strafinger U, Edwards K, Kowarik I, Williamson M (eds) Plant invasions: ecological mechanisms and human responses. Backhuys Publishers, Leiden, pp 169–184

    Google Scholar 

  • Dietz H, Ullmann I (1997) Phenological shifts of the alien colonizer Bunias orientalis L.: an image-based analysis of temporal niche separation. J Veg Sci 8:839–846

    Article  Google Scholar 

  • Dietz H, Steinlein T, Ulimann I (1998) The role of growth form and correlated traits in competitive ranking of six perennial ruderal plant species grown in unbalanced mixtures. Acta Oecol 19:25–36

    Article  Google Scholar 

  • Dietz H, Steinlein T, Ulimann I (1999a) Establishment of the invasive perennial herb Bunias orientalis L.: an experimental approach. Acta Oecol 20:621–632

    Article  Google Scholar 

  • Dietz H, Fischer M, Schmid B (1999b) Demographic and genetic invasion history of a 9-year-old roadside population of Bunias orientalis L. (Brassicaceae). Oecologia 120:225–234

    Article  Google Scholar 

  • Dietz H, Köhler A, Ullmann I (2002) Regeneration growth of the invasive clonal forb Rorippaaustriaca (Brassicaceae) in relation to fertilization and interspecific competition. Plant Ecol 158:171–182

    Article  Google Scholar 

  • Downey PO, Brown JMB (2000) Demography of the invasive shrub Scotch broom (Cytisusscoparius) at Barrington Tops, New South Wales: insights for management. Aust Ecol 25:477–485

    Article  Google Scholar 

  • Drake JA (1990) Communities as assembled structures — do rules govern pattern. Trends Ecol Evol 5:159–164

    Article  PubMed  CAS  Google Scholar 

  • Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ, Rejmánek M, Williamson M (1989) Biological invasions. A global perspective. Wiley, Chichester, 525 pp

    Google Scholar 

  • Dukes JS (2001) Biodiversity and invasibility in grassland microcosms. Oecologia 126:563–568

    Article  Google Scholar 

  • Dukes JS (2002a) Comparison of the effect of elevated CO2 on an invasive species (Centaurea solstitialis) in monoculture and community settings. Plant Ecol 160:225–234

    Article  Google Scholar 

  • Dukes JS (2002b) Species composition and diversity affect grassland susceptibility and response to invasion. Ecol Appl 12:602–617

    Article  Google Scholar 

  • Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139

    Article  PubMed  Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97:7043–7050

    Article  PubMed  CAS  Google Scholar 

  • Elton C (1958) The ecology of invasions by plants and animals. Methuen, London

    Google Scholar 

  • Enserink M (1999) Biological invaders sweep in. Science 285:1834–1836

    Article  CAS  Google Scholar 

  • Ewel JJ (1986) Invasibility: lessons from South Florida. In: Mooney HA, Drake JA (ed) Ecology of biological invasion of North America and Hawaii. Springer, Berlin Heidelberg New York, pp 214–230

    Chapter  Google Scholar 

  • Ferrell MA, Whitson TD, Koch DW, Gade AE (1998) Leafy spurge (Euphorbia esula) control with several grass species. Weed Technol 12:374–380

    Google Scholar 

  • Fine PVA (2002) The invasibility of tropical forests by exotic plants. J Tropical Ecol 18:687–705

    Article  Google Scholar 

  • Fowler SV, Harman HM, Memmott J, Paynter Q, Shaw R, Sheppard AW, Syrett P (1996) Comparing the population dynamics of broom, Cytisus scoparius, as a native plant in the United Kingdom and France, and as an invasive alien weed in Australia and New Zealand. In: Moran VC, Hoffman JH (eds) Proceedings of the IX International Symposium on Biological control of weeds. University of Cape Town, Cape Town, pp 19–26

    Google Scholar 

  • Ghazoul J (2002) Seed predators and the enemy release hypothesis. Trends Ecol Evol 17:308

    Article  Google Scholar 

  • Gibson DJ, Spyreas G, Benedict J (2002) Life history of Microstegium vimineum (Poaceae), an invasive grass in southern Illinois. J Torrey Bot Soc 129:207–219

    Article  Google Scholar 

  • Glenn ER, Tanner S, Mendez T, Kehret D, Moore J, Garcia, Valdes C (1998) Growth rates, salt tolerance and water use characteristics of native and invasive riparian plants from the delta of the Colorado River, Mexico. J Arid Environ 40(3):281–294

    Article  Google Scholar 

  • Grabas GP, Laverty TM (1999) The effect of purple loosestrife (Lytrum salicaria L., Lythraceae) on the pollination and reproductive success of sympatric co-flowering wetland plants. Ecoscience 6:230–242

    Google Scholar 

  • Greiling DA, Kichanan N (2002) Old-field seedling responses to insecticide, seed addition, and competition. Plant Ecol 159:175–183

    Article  Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes and ecosystem properties. Wiley, Chichester

    Google Scholar 

  • Harper J (1977) Population biology of plants. Academic Press, London

    Google Scholar 

  • Harrison S (1999) Native and alien species diversity at the local and regional scales in a grazed California grassland. Oecologia 121:99–106

    Article  Google Scholar 

  • Hector A, Dobson K, Minns A, Bazeley-White E, Lawton JH (2001) Community diversity and invasion resistance: an experimental test in a grassland ecosystem and a review of comparable studies. Ecol Res 16:819–831

    Article  Google Scholar 

  • Honnay O, Verheyen K, Hermy M (2002) Permeability of ancient forest edges for weedy plant species invasion. For Ecol Manage 161:109–122

    Article  Google Scholar 

  • Hooper DU, Vitousek PM (1997) The effects of plant composition and diversity on ecosystem processes. Science 277:1302–1305

    Article  CAS  Google Scholar 

  • Horvitz CC, Pascarella JB, McMann S, Freedman A, Hofstetter RH (1998) Functional roles of invasive non-indigenous plants in hurricane-affected subtropical hardwood forests. Ecol Appl 8:947–974

    Article  Google Scholar 

  • Huston MA (1997) Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110:449–460

    Article  Google Scholar 

  • Huxman TE, Hamerlynck EP, Jordan DN, Salsman KJ, Smith SD (1998) The effects of parental CO2 environment on seed quality and subsequent seedling performance in Bromus rubens. Oecologia 114:202–208

    Article  Google Scholar 

  • Janzen DH (1975) Behavior of Hymenaea courbaril when its predispersal seed predator is absent. Science 189:145–147

    Article  PubMed  CAS  Google Scholar 

  • Jobin A, Schaffner U, Nentwig W (1996) The structure of the phytophagous insect fauna on the introduced weed Solidago altissima in Switzerland. Entomol Exp Appl 79:33–42

    Article  Google Scholar 

  • Joern A (1989) Insect herbivory in the transition to California annual grasslands: did grasshoppers deliver the coup de grass? In: Huenneke LF, Mooney HA (eds) Grassland structure and function: California annual grasslands. Kluwer, Dordrecht, pp 117–134

    Chapter  Google Scholar 

  • Johnston FM, Pickering CM (2001) Alien plants in the Australian Alps. Mountain Res Dev 21:284–291

    Article  Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170

    Article  Google Scholar 

  • Kennedy TA, Naeem S, Howe KM, Knops JMH, Tilman D, Reich P (2002) Biodiversity as a barrier to ecological invasion. Nature 417:636–638

    Article  PubMed  CAS  Google Scholar 

  • Kiviniemi K, Eriksson O (2002) Size-related deterioration of semi-natural grassland fragments in Sweden. Div Distrib 8:21–29

    Article  Google Scholar 

  • Knops JMH, Griffin JR, Royalty AC (1995) Introduced and native plants of the Hastings Reservation, central coastal California: a comparison. Biol Conserv 71:115–123

    Article  Google Scholar 

  • Knops JMH, Griffin JR, Royalty AC (1999) Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecol Lett 2:286–293

    Article  Google Scholar 

  • Kolar CS, Lodge TS (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204

    Article  PubMed  Google Scholar 

  • Kolb A, Alpert P, Enters D, Holzapfel C (2002) Patterns of invasion within a grassland community. J Ecol 90:871–881

    Article  Google Scholar 

  • Lambrinos JG (2001) The expansion history of a sexual and asexual species of Cortaderia in California, USA. J Ecol 89(1):88–98

    Article  Google Scholar 

  • Lambrinos JG (2002) The variable success of Cortaderia species in a complex landscape. Ecology 83:518–529

    Article  Google Scholar 

  • Larson DL, Anderson PJ, Newton W (2001) Alien plant invasion in mixed-grass prairie: effects of vegetation type and anthropogenic disturbance. Ecol Appl 11:128–141

    Article  Google Scholar 

  • Larson KC, Fowler SP, Walker JC (2002) Lack of pollinators limits fruit set in the exotic Lonicera japonica. Am Midland Nat 148:54–60

    Article  Google Scholar 

  • Larson LL, McInnis ML (1989) Impact of grass seedings on establishment and density of diffuse knapweed and yellow starthistle. Northwest Sci 63:162–166

    Google Scholar 

  • Lavorel S, Prieur-Richard AH, Grigulis K (1999) Invasibility and diversity of plant communities: from patterns to processes. Div Distrib 5:41–49

    Article  Google Scholar 

  • Leach MK, Givnish TJ (1996) Ecological determinants of species loss in remnant prairies. Science 273:1555–1561

    Article  CAS  Google Scholar 

  • Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391

    Article  Google Scholar 

  • Levine JM (2000) Species diversity and biological invasions: relating local process to community pattern. Science 288:853–854

    Article  Google Scholar 

  • Levine JM, D’Antonio CM (1999) Elton revisited: a review of evidence linking diversity and invasibility. OIKOS 87:15–26

    Article  Google Scholar 

  • Linde M, Diel S, Neuffer B (2001) Flowering ecotypes of Capsella bursa-pastoris (L.) Medik. (Brassicaceae) analysed by a cosegregation of phenotypic characters (QTL) and molecular markers. Ann Bot 87:91–99

    Article  CAS  Google Scholar 

  • Litton CM, Santelices R (2002) Early post-fire succession in a Nothofagus glauca forest in the Coastal Cordillera of south-central Chile. Int J Wildl Fire 11:115–125

    Article  Google Scholar 

  • Lockhart CS (1996) Aquatic heterophylly as a survival strategy in Melaleuca quinquenervia (Myrtaceae). Can J Bot Rev Can Bot 74:243–246

    Google Scholar 

  • Lodge DM (1993) Biological invasions: lessons for ecology. Trends Ecol Evol 8:133–137

    Article  PubMed  CAS  Google Scholar 

  • Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536

    Article  Google Scholar 

  • Loope LL, Mueller-Dombois D (1989) Characteristics of invaded islands, with special reference to Hawaii. In: Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ, Rejmánek M, Williamson M (eds) Biological invasions: a global perspective. Wiley, Chichester, pp 257–280

    Google Scholar 

  • Loreau M (2000) Biodiversity and ecosystem functioning: recent theoretical advances. Oikos 91:3–17

    Article  Google Scholar 

  • Lyons KG, Schwartz MW (2001) Rare species loss alters ecosystem function — invasion resistance. Ecol Lett 4:358–365

    Article  Google Scholar 

  • Mack RN (1996) Predicting the identity and fate of plant invaders: emergent and emerging approaches. Biol Conserv 78:107–121

    Article  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710

    Article  Google Scholar 

  • Mandák B, Pyšek P (1999): Effects of plant density and nutrient levels on fruit polymorphism in Atriplex sagittata. Oecologia 119:63–72

    Article  Google Scholar 

  • Maron JL, Connors PG (1996) A native nitrogen-fixing shrub facilitates weed invasion. Oecologia 105:302–312

    Article  Google Scholar 

  • Maurer DA, Zedler JB (2002). Differential invasion of a wetland grass explained by tests of nutrients and light availability on establishment and clonal growth. Oecologia 131:279–288

    Article  Google Scholar 

  • Mazia CN, Chaneton EJ, Ghersa CM, Leon RJC (2001) Limits to tree species invasion in pampean grassland and forest plant communities. Oecologia 128:594–602

    Article  Google Scholar 

  • McDowell SCL, Turner DP (2002) Reproductive effort in invasive and non-invasive Rubus. Oecologia 133:102–111

    Article  Google Scholar 

  • Meekins JF, McCarthy BC (1999) Competititve ability of Alliaria petiolata (garlic mustard, Brassicaceae), an invasive, nonindigenous forest herb. Int J Plant Sci 160:743–752

    Article  Google Scholar 

  • Meekins JF, McCarthy BC (2001) Effect of environmental variation on the invasive success of a nonindigenous forest herb. Ecol Appl 11:1336–1348

    Article  Google Scholar 

  • Meyer AH, Schmid B (1999) Seed dynamics and seedling establishment in the invading perennial Solidago altissima under different experimental treatments. J Ecol 87:28–41

    Article  Google Scholar 

  • Meyer JY (1998) Observations on the reproductive biology of Miconia calvescens DC (Melastomataceae), an alien invasive tree on the island of tahiti (South Pacific Ocean). Biotropica 30:609–624

    Article  Google Scholar 

  • Milne RI, Abbott RJ (2000) Origin and evolution of invasive naturalized material of Rhododendron ponticum L. in the British Isles. Mol Ecol 9:541–556

    Article  PubMed  CAS  Google Scholar 

  • Moola FM, Mallik AU (1998) Morphological plasticity and regeneration strategies of velvet leaf blueberry (Vaccinium myrtilloides Michx.) following canopy disturbance in boreal mixed wood forests. For Ecol Manage 111:35–50

    Article  Google Scholar 

  • Mooney HA (1999) Species without frontiers. Nature 397:665–666

    Article  CAS  Google Scholar 

  • Müller-Schärer H, Schroeder D (1991) The impact of root herbivory as a function of plant density and competition: survival, growth, and fecundity of Centaurea maculosa in field plots. J Appl Ecol 28:759–776

    Article  Google Scholar 

  • Naeem S, Knops JMH, Tilman D, Howe KM, Kennedy T, Gale S (2000) Plant diversity increases resistance to invasion in the absence of covarying extrinsic factors. Oikos 91:97–108

    Article  Google Scholar 

  • Newsome A, Noble IR (1986) Ecological and physiological characters of invading species. In: Groves RH, Burden JJ (eds) Ecology of biological invasions: an Australian perspective. Australian Academy of Science, Canberra, pp 1–20

    Google Scholar 

  • Noble IR (1989) Attributes of invaders and the invading process: terrestrial and vascular plants. In: Drake JA, Mooney HA, di Castri F, Groves R, Kruger FJ, Rejmánek M, Williamson M (eds) Biological invasions a global perspective. SCOPE 37. Wiley, Chichester, pp 301–314

    Google Scholar 

  • Olson BE, Wallander RT (1999) Carbon allocation in Euphorbia esula and neighbours after defoliation. Can J Bot 77:1641–1647

    Article  CAS  Google Scholar 

  • Painter EL, Detling JK, Steingraeber DA (1989) Grazing history, defoliation, and frequency-dependent competition: effects on two North American grasses. Am J Bot 76:1368–1379

    Article  Google Scholar 

  • Palmer MW, Maurer T (1997) Does diversity beget diversity? A case study of crops and weeds. J Veg Sci 8:235–240

    Article  Google Scholar 

  • Pappert RA, Hamrick JL, Donovan LA (2000) Genetic variation in Pueraria lobata (Fabaceae), an introduced, clonal, invasive plant of the southeastern United States. Am J Bot 87:1240–1245

    Article  PubMed  CAS  Google Scholar 

  • Parker IM (1997) Pollinator limitation of Cytisus scoparius, an invasive exotic shrub. Ecology 788:1457–70

    Google Scholar 

  • Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham M, Kareiva PM, Williamson MH, Von Holle B, Moyle PB, Byers JE, Goldwasser L (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biol Invasions 1:3–19

    Article  Google Scholar 

  • Parker M, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Paterson AH, Schertz KF, Lin YR, Liu SC, Chang YL (1995) The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence of johnsongrass Sorghum halepense (L.). Proc Natl Acad Sci USA 92:6127–6131

    Article  PubMed  CAS  Google Scholar 

  • Pattison RR, Goldstein G, Ares A (1998) Growth, biomass allocation and photosynthesis of invasive and native Hawaiian rainforest species. Oecologia 117:449–459

    Article  Google Scholar 

  • Pauchard A, Alaback PB, Edlund EG (2003) Studying plant invasions in protected areas at multiple scales: Linaria vulgaris (Scrophulariaceae) in the West Yellowstone area. Western North Am Nat (in press)

    Google Scholar 

  • Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonindigenous species in the United States. BioScience 50:53–65

    Article  Google Scholar 

  • Pimm SL (1991) The balance of nature? University of Chicago Press, Chicago

    Google Scholar 

  • Planty-Tabacchi AM, Tabacchi E, Naiman RJ, Deferrari C, Decamps H (1996) Invasibility of species-rich communities in riparian zones. Conserv Biol 10:598–607

    Article  Google Scholar 

  • Prieur-Richard AH, Lavorel S, Grigulis K, Dos Santos A (2000) Plant community diversity and invasibility by exotics: the example of Conyza bonariensis and C canadensis invasion in Mediterranean annual old fields. Ecol Lett 3:412–422

    Article  Google Scholar 

  • Prieur-Richard AH, Lavorel S, Linhart YB, Dos Santos A (2002) Plant diversity, herbivory and resistance of a plant community to invasion in Mediterranean annual communities. Oecologia 130:96–104

    Google Scholar 

  • Prinzing A, Durka W, Klotz S, Brandl R (2002) Which species become aliens? Evol Ecol Res 4:385–405

    Google Scholar 

  • Pyšek P (1997) Clonality and plant invasions: can a trait make a difference? In: de Kroon H, van Groenendael J (eds) The ecology and evolution of clonal plants. Backhuys Publishers, Leiden, pp 405–427

    Google Scholar 

  • Pyšek P, Pyšek P (1995) Invasion by Heracleum mantegazzianum in different habitats in the Czech Republic. J Veg Sci 6:711–718

    Article  Google Scholar 

  • Pyšek P, Vojtech J, Kucera T (2002) Patterns of invasion in temperate nature reserves. Biol Conserv 104:13–24

    Article  Google Scholar 

  • Radford IJ, Cousens RD (2000) Invasiveness and comparative life-history traits of exotic and indigenous Senecio species in Australia. Oecologia 125:531–542

    Article  Google Scholar 

  • Radho-Toly S, Majer JD, Yates C (2001) Impact of fire on leaf nutrients, arthropod fauna and herbivory of native and exotic eucalypts in Kings Park, Perth, Western Australia. Aust Ecol 26:500–506

    Article  Google Scholar 

  • Rees M, Paynter Q (1997) Biological control of Scotch broom: modelling the determinants of abundance and the potential impact of introduced insect herbivores. J Appl Ecol 34:1203–1221

    Article  Google Scholar 

  • Reichard SH (1997) What traits distinguish invasive plants from non-invasive plants? In: California Exotic Pest Plant Council, 1996 Symposium Proceedings, pp 1–9

    Google Scholar 

  • Rejmánek M (1989) Invasibility of plant communities. In: Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ, Rejmánek M, Williams M (eds) Biological invasions: a global perspective. Wiley, Chichester, pp 369–388

    Google Scholar 

  • Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661

    Article  Google Scholar 

  • Reznick DN, Ghalambor CK (2001) The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112:183–198

    Article  PubMed  Google Scholar 

  • Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmánek M (2000a) Plant invasions — the role of mutualisms. Biol Rev Cambridge Philos Soc 75:65–93

    Article  PubMed  CAS  Google Scholar 

  • Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panettta FD, West CJ (2000b) Naturalization and invasion of alien plants: concepts and definitions. Div Distrib 6:93–107

    Article  Google Scholar 

  • Robinson GR, Quinn JF, Stanton ML (1995) Invasibility of experimental habitat islands in a California winter annual grassland. Ecology 76:786–794

    Article  Google Scholar 

  • Roché BF Jr, Roché CT, Chapman RC (1994) Impacts of grassland habitat on yellow starthistle (Centaurea solstitialis L.) invasion. Northwest Sci 68:86–96

    Google Scholar 

  • Ross KA, Fox BJ, Fox MD (2002) Changes to plant species richness in forest fragments: fragment age, disturbance and fire history may be as important as area. J Biogeogr 29:749–765

    Article  Google Scholar 

  • Rouget M, Richardson DM, Milton SJ, Polakow D (2001) Predicting invasion dynamics of four alien Pinus species in a highly fragmented semi-arid shrubland in South Africa. Plant Ecol 152:79–92

    Article  Google Scholar 

  • Safford HD, Harrison SP (2001) Grazing and substrate interact to affect native vs exotic diversity in roadside grasslands. Ecol Appl 11:1112–1122

    Article  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Sasek TW, Strain BW (1988) Effects of carbon dioxide enrichment on the growth and morphology of kudzu (Pueraria lobata). Weed Sci 36:28–36

    Google Scholar 

  • Sasek TW, Strain BW (1991) Effects of CO2 enrichment on the growth and morphology of a native and an introduced honeysuckle vine. Am J Bot 78:69–75

    Article  CAS  Google Scholar 

  • Schierenbeck KA, Mack RN, Sharitz RR (1994) Effects of herbivory on growth and biomass allocation in native and introduced species of Lonicera. Ecology 75:1661–1672

    Article  Google Scholar 

  • Schweitzer JA, Larson KC (1999) Greater morphological plasticity of exotic honeysuckle species may make them better invaders than native species. J Torrey Bot Soc 126:15–23

    Article  Google Scholar 

  • Scott NA, Saggar S, McIntosh PD (2001) Biogeochemical impact of Hieracium invasion in New Zealand’s grazed tussock grasslands: sustainability implications. Ecol Appl 11:1311–1322

    Article  Google Scholar 

  • Seiger LA (1997) The status of Fallopia japonica (Reynoutria japonica; Polygonum cuspi-datum) in North America. In: Brock JH, Wade M, Pyšek P, Green D (eds) Plant invasions — studies from North America and Europe. Backhuys, Leiden, pp 95–102

    Google Scholar 

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176

    Article  Google Scholar 

  • Sheppard AW, Vitou J (2000) The effect of a rosette-crown fly, Botanophila turcica, on growth, biomass allocation and reproduction of the thistle Carthamus lanatus. Acta Oecol 21:337–347

    Article  Google Scholar 

  • Siemann E, Rogers WE (2001) Genetic differences in growth of an invasive tree species. Ecol Lett 4:514–518

    Article  Google Scholar 

  • Simberloff D, von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1:21–32

    Article  Google Scholar 

  • Smith MD, Knapp AK (2001) Size of the local species pool determines invasibility of a C4-dominated grassland. Oikos 92:55–61

    Article  Google Scholar 

  • Smith SD, Strain BR, Sharkey TD (1987) Effects of carbon dioxide enrichment on four Great Bassin [USA] grasses. Funct Ecol 1:139–144

    Article  Google Scholar 

  • Smith SD, Huxmann TE, Zitzer SF, Charlet TN, Housman DC, Coleman JS, Fenstermaker LK, Seemann JR, Nowak RS (2000) Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408:79–82

    Article  PubMed  CAS  Google Scholar 

  • Soldaat LL, Auge H (1998) Interactions between an invasive plant, Mahonia aquifolium, and a native phytophagous insect, Rhagoletis meigenii. In: Starfinger U, Edwards K, Kowarik I, Williamson M (eds) Plant invasions — ecological mechanisms and human responses. Backhuys Publishers, Leiden, pp 347–360

    Google Scholar 

  • Stapanian MA, Sundberg SD, Baumgardner GA, Liston A (1998) Alien plant species composition and associations with anthropogenic disturbance in North American forests. Plant Ecol 139:49–62

    Article  Google Scholar 

  • Steinger T, Müller-Schärer H (1992) Physiological and growth responses of Centaurea maculosa (Asteraceae) to root herbivory under varying levels of interspecific plant competition and soil nitrogen availability. Oecologia 91:141–149

    Google Scholar 

  • Steinlein T, Dietz H, Ullmann I (1996) Growth patterns of the alien perennial Bunias orientalis L. (Brassicaceae) underlying its rising dominance in some native plant assemblages. Vegetatio 125:73–82

    Article  Google Scholar 

  • Stohlgren TJ, Binkley D, Chong GW, Kalkhan MA, Schell LD, Bull KA, Otsuki Y, Newman G, Bashkin M, Son Y (1999) Exotic plant species invade hot spots of native plant diversity. Ecol Monogr 69:25–46

    Article  Google Scholar 

  • Stohlgren TJ, Barnett DT, Kartesz JT (2003) The rich get richer: patterns of plant invasions in the United States. Front Ecol Environ 1:11–14

    Article  Google Scholar 

  • Symstad AJ (2000) A test of the effects of functional group richness and composition on grassland invasibility. Ecology 81:99–109

    Article  Google Scholar 

  • Ter Borg SJ, Schippers P, Van Groenendael JM, Rotteveel TJW (1998) Cyperus esculentus (yellow nutsedge) in NW Europe: invasions on a local, regional and global scale. In: Starfinger U, Edwards K, Kowarik I, Williamson M (eds) Plant invasions — ecological mechanisms and human responses. Backhuys, Leiden, pp 261–273

    Google Scholar 

  • Terwilliger J, Pastor J (1999) Small mammals, ectomycorrhizae, and conifer succession in beaver meadows. Oikos 85:83–94

    Article  Google Scholar 

  • Thébaud C, Simberloff D (2001) Are plants really larger in their introduced ranges? Am Nat 157:231–236

    Article  PubMed  Google Scholar 

  • Thompson K, Hodgson JG, Rich TCG (1995) Native and alien invasive plants: more of the same? Ecography 18:390–402

    Article  Google Scholar 

  • Tilman D (1997) Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 78:81–92

    Article  Google Scholar 

  • Tilman D (1999) The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80:1455–1474

    Google Scholar 

  • Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720

    Article  CAS  Google Scholar 

  • Troumbis AY, Galanidis A, Kokkoris GD (2002) Components of short-term invasibility in experimental Mediterranean grasslands. Oikos 98:239–250

    Article  Google Scholar 

  • Usher MB (1988) Biological invasions of nature reserves: a search for generalisations. Biol Conserva 44:119–135

    Article  Google Scholar 

  • Uveges JL, Corbett AL, Mal TK (2002) Effects of lead contamination on the growth of Lythrum salicaria (purple loosestrife). Environ Pollut 120:319–323

    Article  PubMed  CAS  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Boller T, Wiemken A, Sanders IR (1999) “Sampling effect,” a problem in biodiversity manipulation? A reply to David A. Wardle. Oikos 87:408–410

    Article  Google Scholar 

  • Vermeij GJ (1996) An agenda for invasion biology. Biol Conserv 78:3–9

    Article  Google Scholar 

  • Vitousek PM, D’Antonio CM, Loope LL, Westbrooks R (1996) Biological invasions as global environmental change. Am Sci 84:218–228

    Google Scholar 

  • Vitousek PM, D’Antonio CM, Loope LL, Rejmánek M, Westbrooks R (1997a) Introduced species: a significant component of human caused global change. N Z J Ecol 21:1–16

    Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997b) Human domination of earth’s ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  • Walker B, Steffen W (1997) An overview of the implications of global change for natural and managed terrestrial ecosystems. Conserv Ecol [online] 1(2) http://www.conse-col.org/vol1/iss2/

    Google Scholar 

  • Wall DH, Moore JC (1999) Interactions underground. Soil biodiversity, mutualism, and ecosystem processes. BioScience 49:109–117

    Article  Google Scholar 

  • Wardle DA (1999) Is “sampling effect” a problem for experiments investigating biodiversity-ecosystem function relationship? Oikos 87:403–407

    Article  Google Scholar 

  • Wardle DA (2001) Experimental demonstration that plant diversity reduces invasibility-evidence of a biological mechanism or a consequence of sampling effect? Oikos 95:161–170

    Article  Google Scholar 

  • Williamson J, Harrison S (2002) Biotic and abiotic limits to the spread of exotic revegetation species. Ecol Appl 12:40–51

    Article  Google Scholar 

  • Williamson M (1989) Mathematical models of invasion. In: Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ, Rejmánek M, Williamson M (eds) Biological invasions: a global perspective. Wiley, Chichester, pp 329–350

    Google Scholar 

  • Williamson M (1996) Biological invasions. Chapman and Hall, London

    Google Scholar 

  • Williamson M (1999) Invasions. Ecography 22:5–12

    Article  Google Scholar 

  • Willis AJ, Blossey B (1999) Benign climates don’t explain the increased vigour of non-indigenous plants: a cross-continental transplant experiment. Biocontrol Sci Technol 9:567–577

    Article  Google Scholar 

  • Willis AJ, Thomas MB, Lawton JH (1999) Is the increased vigour of invasive weeds explained by a trade-off between growth and herbivore resistance? Oecologia 120:632–640

    Article  Google Scholar 

  • Willis AJ, Memmott J, Forrester RI (2000) Is there evidence for the post-invasion evolution of increased size among invasive plant species? Ecol Lett 3:275–283

    Article  Google Scholar 

  • Wilsey BJ, Polley HW (2002) Reductions in grassland species evenness increase dicot seedling invasion and spittle bug infestation. Ecol Lett 5:676–684

    Article  Google Scholar 

  • With KA (2002) The landscape ecology of invasive spread. Conserv Biol 16:1192–1203

    Article  Google Scholar 

  • Woitke M, Dietz H (2002) Shifts in dominance of native and invasive plants in experimental patches of vegetation. Perspectives in plant ecology. Evol Syst 5:165–184

    Google Scholar 

  • Young JA, Palmquist DE, Wotring SO (1997) The invasive nature of Lepidium latifolium: a review. In: Brock JH, Wade M, Pyšek P, Green D (eds) Plant invasions — studies from North America and Europe. Backhuys, Leiden, pp 59–68

    Google Scholar 

  • Zangerl AR, Berenbaum MR (1997) Cost of chemically defending seeds: furanocoumarins and Pastinaca sativa. Am Nat 150:491–504

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dietz, H., Steinlein, T. (2004). Recent Advances in Understanding Plant Invasions. In: Esser, K., Lüttge, U., Beyschlag, W., Murata, J. (eds) Progress in Botany. Progress in Botany, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18819-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18819-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62306-6

  • Online ISBN: 978-3-642-18819-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics