Skip to main content

Pathogenesis of Breast Cancer

  • Chapter
Molecular Basis of Breast Cancer

Abstract

It is not known when in the lifetime of a woman the initiation of breast cancer takes place, or whether a specific agent causes it. The fact that late menarche and a full-term pregnancy completed before age 24, or early full-term pregnancy, reduces the risk of breast cancer development, whereas early menarche, nulliparity and exposure to ionizing radiations at ages younger than 19 are associated with a higher breast cancer incidence [1, 2], indicates that the period encompassed between menarche and first fullterm pregnancy represents a window of high susceptibility for the initiation of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Russo, J., Gusterson, B.A., Rogers, A.E., Russo, I.H., Wellings, S.R. and Van Zwieten, M.J. Comparative study of human and rat mammary tumorigenesis. Lab. Invest. 62:1–32, 1991.

    Google Scholar 

  2. McGregor, D.H., Land, C.E., Choi, K., Tokuoka, S., Liu, P.I., Wakabayashi, I., Beebe, G.W. Breast cancer incidence among atomic bomb survivors, Hiroshima and Nagasaki 1950-1989. J. Natl. Cancer Inst. 59:799–811, 1977.

    PubMed  CAS  Google Scholar 

  3. Wellings, S.R. Development of human breast cancer. Adv. Cancer Res. 31:287–299, 1980.

    Article  PubMed  CAS  Google Scholar 

  4. Wellings, S.R., Jensen, H.M. and Marcum, R.G. An atlas of subgross pathology of 16 human breasts with special reference to possible precancerous lesions. J. Natl. Cancer Inst. 55:231–275, 1975.

    PubMed  CAS  Google Scholar 

  5. Russo, J., Rivera, R. and Russo, I.H. Influence of age and parity on the development of the human breast. Breast Cancer Res. Treat. 23:211–218, 1992.

    Article  PubMed  CAS  Google Scholar 

  6. Russo, J., Romero, A.L. and Russo, I.H. Architectural pattern of the normal and cancerous breast under the influence of parity. J. Cancer Epidemiol. Biomarkers & Prevention 3:219–224, 1994.

    CAS  Google Scholar 

  7. Russo, J., Reina, D., Frederick, J. and Russo, I.H. Expression of phenotypical changes by human breast epithelial cells treated with carcinogens in vitro. Cancer Res. 48:2837–2857, 1988.

    PubMed  CAS  Google Scholar 

  8. Russo, J., Calaf, G, Russo, I.H. 1A critical approach to the malignant transformation of human breast epithelial cells. CRC Critical Rev. Oncogen. 4:403–417, 1993

    CAS  Google Scholar 

  9. Russo, J. and Russo, I.H. Development of Human Mammary Gland. In: The Mammary Gland Development, Regulation, and Function. (M.C. Neville and C.W. Daniel, eds Plenum Pub. Corp. 1987, pp. 67–93.

    Google Scholar 

  10. Russo, J., Lynch, H., and Russo, I.H. Mammary gland architecture as a determining factor in the susceptibility of the human breast to cancer. Breast Journal 7(5):278–291, 2001.

    Article  PubMed  CAS  Google Scholar 

  11. Russo, J., Russo, I.H. Toward a physiological approach to breast cancer prevention. Cancer Epidemiol, Biomarkers & Prevention 3:353–364, 1994.

    CAS  Google Scholar 

  12. Barnabas, N., Moraes, R., Calaf, G., Estrada, S., Russo, J. Role of p53 in MCF-10F cell immortalization and chemically-induced neoplastic transformation. Int. J. Oncol. 7:1289–1296, 1995.

    PubMed  CAS  Google Scholar 

  13. Rajan, J.V., Marquis, S.T., Gardner, H.P., Chodosh, L.A. Developmental expression of BRCA2 co-localizes with BRCA1 and is associated with proliferation and differentiation in multiple tissues. Developmental Biology 184:385–401, 1997.

    Article  PubMed  CAS  Google Scholar 

  14. Colditz, G.A., Rosner, B.A., Speizer, E. Risk factors for breast cancer according to family history of breast cancer. J. Natl. Cancer Inst. 1996; 88:365–371.

    Article  PubMed  CAS  Google Scholar 

  15. Russo, I.H., Russo, J. Developmental stage of the rat mammary gland as determinant of its susceptibility to 7,12-dimethylbenz(a)anthracene. J. Natl. Cancer Inst. 1978 61:1439–1449.

    PubMed  CAS  Google Scholar 

  16. Hu, Y.F., Russo, I.H., Zalipsky, U., Lynch, H.T., Russo, J. Environmental chemical carcinogens induce transformation of breast epithelial cells from women with familial history of breast cancer. In vitro Cell Dev. Biol. 33:495–498, 1997.

    Article  CAS  Google Scholar 

  17. Lambe, M, Hsieh, C.C., Trichopoulos, D, Ekbom A, Pavia M, Adami HO. Transient increase in the risk of breast cancer after giving birth. N. England J. Med. 331:5–9, 1994.

    Article  CAS  Google Scholar 

  18. Eyden, B., Watson, R.J., Harris, M., Howell, A. Intralobular stromal fibroblasts in the resting human mammary gland: ultrastructural properties and intercellular relationship. J. Sub-microsc Cytol. 18:397–408, 1986.

    CAS  Google Scholar 

  19. Ozzello, L. Epithelial-stromal junction of normal and dysplastic mammary glands. Cancer 25:586–600, 1970.

    Article  PubMed  CAS  Google Scholar 

  20. Sakakura, T., Sakagami, Y., Nishizuka, Y. Persistence of responsiveness of adult mouse mammary gland to induction by embryonic mesenchyme. Dev. Biol. 72:201–210, 1979.

    Article  PubMed  CAS  Google Scholar 

  21. Henson, D.E., Tarone, R.E. On the possible role of involution in the natural history of breast cancer. Cancer 71:2154–2156, 1994.

    Article  Google Scholar 

  22. Marquis, S.T., Rajan, J.V., Wynshaw-Boris, A., et al. The developmental pattern of BRCA1 expression implies a role in differentiation of the breast and other tissues. Nature Genet. 11:17–26, 1995.

    Article  PubMed  CAS  Google Scholar 

  23. Pankow, J.E., Vachon, CM., Kuni, C.C., King, R.A., Anett, D.K., Grabrick, D.M., Rich, S.S., Anderson, V.E., Sellers, T.A. Genetic analysis of mammographic breast density in adult women: Evidence of a gene effect. J. Natl. Cancer Inst. 89:549–556, 1997.

    Article  PubMed  CAS  Google Scholar 

  24. Wilkinson, E., Clopton, C., Gordonson, J., Green, R., Hill, A., Pike, M.C. Mammographic parenchymal pattern and the risk of breast cancer. J. Natl. Cancer Inst. 59:1397–1400, 1977.

    PubMed  CAS  Google Scholar 

  25. Wolfe, J.N., Albert, S., Belle, S., Salane, M. Familial influences on breast parenchymal patterns. Cancer 46:2433–2437, 1980.

    Article  PubMed  CAS  Google Scholar 

  26. Saftlas, A.F., Wolfe, J.N., Hoover, R.N., Brinton, L.A., et al. Mammographie parenchymal patterns as indicators of breast cancer risk. Am. J. Epidemiol. 129:518–526,1089.

    Google Scholar 

  27. Oza, A.M., Boyd, N.F. Mammographie parenchymal patterns: a marker of breast cancer risk. Epidemiol. Rev. 15:196–208, 1993.

    PubMed  CAS  Google Scholar 

  28. Russo, J., Hu, Y-F. Silva, I.D.C.G., and Russo, I.H. Cancer risk related to mammary gland structure and development. Microscopy Research and Technique 52:204–223, 2001.

    Article  PubMed  CAS  Google Scholar 

  29. Propper, A. Role du mesenchyme dans la differenciation de la glande mammaire chez l'embryon de lapin. Bull. Soc. Zool.Fr. 97:505–512, 1972.

    Google Scholar 

  30. Sakakura, T., Nishizuka, Y, Dawe, C. Mesenchyme-dependent morphogenesis and epithelium specific cytodifferentiation in mouse mammary gland. Science 194:1439–1441, 1976.

    Article  PubMed  CAS  Google Scholar 

  31. Cunha, G.R., Young, P., Hamamoto, S., Guzman, R., Nandi, S. Developmental response of adult mammary epithelial cells to various fetal and neonatal mesenchymes. Epithelial Cell Biol. 1:105–118, 1992.

    PubMed  CAS  Google Scholar 

  32. Kratochwil, K., Schwartz, P. Tissue interaction in androgen response of embryonic mammary rudiment of mouse: identification of target tissue of testosterone. Proc. Natl. Acad. Sci. USA 73:4041–4044, 1976.

    Article  PubMed  CAS  Google Scholar 

  33. Faulkin, J.L., DeOme, K.B. Regulation of growth and spacing of gland elements in the mammary fat pad of the C3H mouse. J. Natl. Cancer Inst. 24:953–969, 1960.

    PubMed  Google Scholar 

  34. Sun, C., Lenair, G., Lynch, H., Narod, S. In situ Breast Cancer and BRCA1. Lancet 348:408, 1996.

    Article  PubMed  CAS  Google Scholar 

  35. Jernstrom, H., Johannsson, 0., Borg, A., Olsson, H. Do BRCA1 mutations affect the ability to breast-feed? significantly shorter length of breast-feeding among BRCA1 mutation carriers compared with their unaffected relatives. Breast 7:320–324, 1998.

    Article  Google Scholar 

  36. Xu X, Wagner KU, Larson D, et al. Conditional mutation of BRCA1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat. Genet. 1999; 22:37–43 and tumour formation. Nat. Genet. 22:37-43, 1999.

    Article  PubMed  CAS  Google Scholar 

  37. Russo, I.H. and Russo, J. Mammary gland neoplasia in longterm rodent studies. Environ. Health Perspect. 104:938–967, 1996.

    Article  PubMed  CAS  Google Scholar 

  38. Russo, J., Calaf, G., Sohi, N., Tahin, Q., Zhang, P.L., Alvarado, M.E., Estrada, S., and Russo, I.H. Critical steps in breast carcinogenesis. Ann. NY Acad. Sci. 698:1–20, 1993.

    Article  PubMed  CAS  Google Scholar 

  39. Russo, J., Barnabas, N., Higgy, N., Salicioni, A.M., Wu, Y.L., Russo, I.H. Molecular basis of human breast epithelial cell transformation. In: Calvo F, Crepin M, Magdalenat H (eds,) Breast Cancer, Advances in Biology and Therapeutics, John Libbey Eurotext, 1996, pp. 33–43.

    Google Scholar 

  40. Soule, H.D., Maloney, T.M., Wolman, S.R., Peterson, W.D., Brenz, R., McGrath, C.M., Russo, J., Pauley, R.J., Jones, R.E, and Brooks, S.C. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line MCF 10. Cancer Res. 50:6075–6086, 1991.

    Google Scholar 

  41. Tait, L., Soule, H.D., and Russo, J. Ultrastructural and immunocytochemical characterization of an immortalized human breast epithelial cell line, MCF10. Cancer Res. 50:6087–6094, 1991.

    Google Scholar 

  42. Silva,.D.C.G., Hu, Y.F., Russo, I.H., Ao, X., Salicioni, A.M., Yang, X. and Russo, J. S100P Ca +2-binding protein overex-pression is associated with immortalization and neoplastic transformation of human breast epithelial cells in vitro and tumor progression in vivo. International Journal of Oncology 16:231–240, 2000.

    Google Scholar 

  43. Higgy, N.A., Salicioni, A.M., Russo, I.H., Zhang, P.I. and Russo, J. Differential expression of human ferritin H chain gene in immortal human breast epithelial MCF-10F cells Molecular Carcinogenesis 20:332–339, 1997.

    CAS  Google Scholar 

  44. Boyd, D., Vecoli, C., Belcher, D.M., Jain, S.K., Drysdale, J.W. Structural and functional relationships of human ferritin H and L chains deduced from cDNA clones. J. Biol. Chem. 260:11755–11761, 1985.

    PubMed  CAS  Google Scholar 

  45. Costanzo, F., Santoro, C., Colantuoni, V. et al. Cloning and sequencing of a full length cDNA coding for a human apoferritin H chain: evidence for a multigene family. The EMBO J. 3:23–27, 1984.

    CAS  Google Scholar 

  46. Anison, P. Current concepts in iron metabolism. Clin. Haematol. 11:241–257, 1982.

    Google Scholar 

  47. Weinberg, E.D. Iron and neoplasia. Biol. Trace Elem. Res. 3:55–80, 1981.

    Article  CAS  Google Scholar 

  48. Richard, P., Ehrenberg, A. Ribonucleotide reductase: a radical enzyme. Science 221:514–519, 1983.

    Article  Google Scholar 

  49. Fan, H., Villegas, C., Wright, J.A. A link between ferritin gene expression and ribo-nucleotide reductase R2 protein, as demonstrated by retroviral vector mediated stable expression of R2 cDNA. FEBS Letters 382:145–148, 1996.

    Article  PubMed  CAS  Google Scholar 

  50. Keown, P., Descaps-Latscha, B. In vitro suppression of cell mediated immunity by ferro-proteins and ferric salts. Cellular Immunology 80:257–266, 1983.

    Article  PubMed  CAS  Google Scholar 

  51. Rosen, H.R., Moroz, C., Reiner, A., et al. Placental isoferritin associated p43 antigen correlates with features of high differentiation in breast cancer. Br. Cancer Res. & Treatment 24:17–26, 1992.

    Article  CAS  Google Scholar 

  52. Rosen, H.R., Flex, D., Stierer, M., Moroz, C. Monoclonal antibody CM-H-9 detects placental isoferritin in the serum of patients with visceral metastases of breast cancer. Cancer Lett. 59:145–151, 1991.

    Article  PubMed  CAS  Google Scholar 

  53. Kwak, E.L., Larochelle, D.A., Blaumont, C., Torti, S.V., Torti, F.M. Role of NF-KB in the regulation of ferritin H by tumor necrosis factor-α. J. Biol. Chem. 270:15285–15293, 1995.

    Article  PubMed  CAS  Google Scholar 

  54. Calaf, G., and Russo, J. Transformation of breast epithelial cells by chemical carcinogens. Carcinogenesis 14:483–492, 1993.

    Article  PubMed  CAS  Google Scholar 

  55. Becker, T., Gerke, V., Kube, E., and Weber, K. S100P: a novel calcium-binding protein from human placenta. cDNA cloning, recombinant protein expression and calcium-binding properties. Eur. J. Biochem. 207:541–547, 1992.

    Article  PubMed  CAS  Google Scholar 

  56. Emoto, Y, Kobayashi, R., Akatsuba, H., and Hidaka, H. Purification and characterization of a new member of the S100 protein family from human placenta. Biochem. Biophys. Res. Comm. 182:1246–1253, 1992.

    Article  PubMed  CAS  Google Scholar 

  57. Moore, B.E. A soluble protein characteristic of the nervous system. Biochem. Biophys. Res. Commun. 19:739–744, 1965.

    Article  PubMed  CAS  Google Scholar 

  58. Sherbet, G.V., and Lakshmi, M.S. A100A4 (MTS1 calcium binding protein in cancer growth, invasion and metastasis. Anti Cancer Res. 18:2415–2422, 1998.

    CAS  Google Scholar 

  59. Schafer, B.W., and Heizmann, C.W. The S100 family of EF-hand calcium-binding proteins: functions and pathology. TIBS 21:134–140, 1996.

    PubMed  CAS  Google Scholar 

  60. McGrath, C.M., and Soule, H.D. Calcium regulation of normal human mammary epithelial cell growth in culture. In vitro Cell Dev. Biol. 20:652–662, 1984.

    CAS  Google Scholar 

  61. Soule, H.D., and McGrath, C.M. A simplified method for passage and long-term growth of human mammary epithelial cells. In vitro 22:6–12, 1985.

    Google Scholar 

  62. Ochieng, J., Tahin, Q.S., Booth, C.C., and Russo, J. Buffering of intracellular calcium in response to increase levels in mortal, immortal and transformed human breast epithelial cells. J. Cell. Biochem. 46:250–254, 1993.

    Article  Google Scholar 

  63. Hennings, H., Michael, D., Cheng, G, Steinert, P., Holbrook, K., Yuspa, S.H. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 19:245–254, 1980.

    Article  PubMed  CAS  Google Scholar 

  64. Cristofalo VJ, Wallace JM, Rosma BA: In Sato SH, Ross R (eds): “Hormones and Cell Culture: Book B.” Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1979, pp 875–887.

    Google Scholar 

  65. Carafoli, E. Intracellular calcium homeostasis. Annu. Rev. Biochem. 56:395–433, 1987.

    Article  PubMed  CAS  Google Scholar 

  66. Babu, S.Y., Sack, J.S., Greenbough, T.J., Bagg, C.E., Means, A.R., Cook, WJ. Three-dimensional structure of calmodulin. Nature 315:37–40, 1985.

    Article  PubMed  CAS  Google Scholar 

  67. Schatzmann, H.J. ATP-dependent Ca2+-extrusion from human red cells. Experientia 22:364–365, 1966.

    Article  PubMed  CAS  Google Scholar 

  68. Varecka, L., Carafoli, E. Vanadate-induced movements of Ca2+ and K+ in human red blood cells. J. Biol. Chem. 257:7414–7421, 1982.

    PubMed  CAS  Google Scholar 

  69. Reuter, H., Seitz, N. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J. Physiol. 195:451–470, 1968.

    PubMed  CAS  Google Scholar 

  70. Berridge, M.J., Irvine, R.F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321, 1984.

    Article  PubMed  CAS  Google Scholar 

  71. Hennings, H., Kruzewski, EH., Yuspa, S.H., Tucker, R.W. Intracellular calcium alterations in response to increased external calcium in normal and neoplastic keratinocytes. Carcinogenesis 10:777–780, 1989.

    Article  PubMed  CAS  Google Scholar 

  72. Meldolesi, J., Pozzan, T. Pathways of Ca2+ influx at the plasma membrane: voltage-, receptor-, and second messenger-operated channels. Exp. Cell Res. 171:271–283, 1987.

    Article  PubMed  CAS  Google Scholar 

  73. Patel, K.V., Schrey, M.Y. Activation of inositol phospholipid signaling and Ca2+ efflux in human breast cancer cells by bombesin. Cancer Res. 50:235–239, 1990.

    PubMed  CAS  Google Scholar 

  74. Kerr, J.F.R., Wyllie, A.H., Currie, A.R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26:239–257, 1972.

    Article  PubMed  CAS  Google Scholar 

  75. Kyprianou, N., English, H.F., Davidson, N.E., Isaacs, J.T. Programmed cell death during regression of the MCF-7 human breast cancer following estrogen ablation. Cancer Res. 51:162–166, 1991.

    PubMed  CAS  Google Scholar 

  76. Huang, Y, Bove, B., Wu, Y.L., Russo, I.H., Yang, X., Zekri, A., and Russo, J. Microsatellite instability during immortalization and transformation of human breast epithelial cells in vitro. Molecular Carcinogenesis 24:118–127, 1999

    Article  PubMed  CAS  Google Scholar 

  77. Wu, Y, Barnabas, N.; Russo, I.H., Yang, X. and Russo, J. Microsatellite Instability and Loss of heterozygosity in chromosomes 9 and 16 in human breast epithelial cells transformed by chemical carcinogens. Carcinogenesis 18:1069–1074, 1997

    Article  PubMed  CAS  Google Scholar 

  78. Russo, I.H., Tahin, Q., Huang, Y and Russo, J. Cellular and molecular changes induced by the chemical carcinogen benzo(a)pyrene in human breast epithelial cells in association with smoking and breast cancer. J. of Women’s Cancer 3:29–36, 2001.

    Google Scholar 

  79. Russo, J., Hu, Y.F., Yang, X., Huang, Y., Silva I., Bove, B., Higgy, N., Russo, I.H. Breast cancer multistage progression. Frontiers in Bio Science 3:944–960, 1998.

    Google Scholar 

  80. Harris, J.R., Hellmam, S. Natural history of breast cancer. In: Harris, J.R., Lippman, M.E., Morrow, M., Hellman, S. (eds), Diseases of the Breast, pp. 375–391. Philadelphia: Lippincott-Raven, 1996.

    Google Scholar 

  81. Lakhani, S.R. The transition from hyperplasia to invasive carcinoma of the breast. J. Pathol. 187:272–278, 1999.

    Article  PubMed  CAS  Google Scholar 

  82. Werner, M., Mattis, A., Aubele, M., Cummings, M., Zitzelsberger, HH., Hhutzler, P., Höfler, H. 20q13.2 amplification in intraductal hyperplasia adjacent to in situ and invasive ductal carcinoma of the breast. Virchows Arch. 435:469–472, 1999.

    Article  PubMed  CAS  Google Scholar 

  83. Eiriksdottir, G., Sigurdsson, A., Jonasson, J.G., Agnarsson, B.A., Sigurdsson, H., Gudmundsson, J., Bergthorsson, J.T., Barkardottir, R.B., Egilsson, V., Ingvarsson, S. Loss of heterozygosity on chromosome 9 in human breast cancer: association with clinical variables and genetic changes at other chromosome regions. Int. J. Cancer 64:378–382, 1995.

    Article  PubMed  CAS  Google Scholar 

  84. Kuukasjärvi, T., Karhu, R., Tanner, M., Kähkönen, M., Schäffer, A., Nupponen, N., Pennanen, S., Kallioniemi, A., Kallioniemi, O-R, Isola, J. Genetic heterogeneity and clonal evolution underlying development of asynchronous metastasis in human breast cancer. Cancer Res. 57:1597–1604, 1997.

    PubMed  Google Scholar 

  85. Fujii, H., Marsh, C., Cairns, P., Sidransky, D., Gabrielson, E. Genetic divergence in the clonal evolution of breast cancer. Cancer Res. 56:1493–1497, 1996.

    PubMed  CAS  Google Scholar 

  86. Weber, J.L., May, P.E. Abundant class of human DNA polymorphisms, which can be using the polymerase chain reaction. Am J Hum Genet 44:388–96, 1989.

    PubMed  CAS  Google Scholar 

  87. Boyer, J.C., Umar, A., Risinger, J.L., et al. Microsatellite instability, mismatch repair deficiency, and genetic defects in human cancer cell lines. Cancer Res. 55:6063–6070, 1995.

    PubMed  CAS  Google Scholar 

  88. Lonov, Y, Peinado, M.A., Malkhosyan, S., Shibata, D., Perucho, M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363:558–61, 1993

    Article  Google Scholar 

  89. Yee, C.J., Roodi, N., Verrier, C.S., Parl, F.F. Microsatellite instability and loss of heterozygosity in breast cancer. Cancer Res. 54:1641–1644, 1994.

    PubMed  CAS  Google Scholar 

  90. Wooster, R., Cleton-Jansen, A.-M., Collins, N., Mangion, J., Cornelis, R.S., Cooper, C.S., Gusterson, B.A., Ponder, B.A.J., von Deimling, A., Wiestler, O.D., Cornelisse, C.J., Devilee, P., Stratton, M.R. Instability of short tandem repeats (microsatellite) in human cancers. Nature Genetics 6:152–156, 1994.

    Article  PubMed  CAS  Google Scholar 

  91. Sibata, D. Extraction of DNA from paraffin-embedded tissue for analysis by polymerase chain reaction: new tricks from an old friend. Human Pathology 25:461–563, 1994.

    Google Scholar 

  92. Honma, M., Ohara, Y, Murayama, H., Sako, K. and Iwasaki, Y. Effects of fixation and varying target length on the sensitivity of polymerase chain reaction for detection of human T-cell leukemia virus type I proviral DNA in formalin-fixed tissue sections. Journal of Clinical Microbiology 31:1799–1803, 1993.

    PubMed  CAS  Google Scholar 

  93. Going, J.J. and Lamb, R.R Practical histological microdissection for PCR analysis. Journal of Pathology 179:121–124, 1996.

    Article  PubMed  CAS  Google Scholar 

  94. Walsh, P.S., Varlaro, J., and Reynolds, R. A rapid chemiluminescent method for quantitation of human DNA. Nucleic Acids Research 20:5061–5065, 1992.

    Article  PubMed  CAS  Google Scholar 

  95. Whetsell, L., Maw, G.K, Nadon, N., Ringer, D. and Schafer, RV. Polymerase chain reaction microanalysis of tumors from stained histological slides. Oncogene 7:2355–2361, 1992.

    PubMed  CAS  Google Scholar 

  96. Emmert-Buck, M.R., R.R Bonner, P.D. Smith, R.R Chuaqui, Z. Zhuang, S.R. Goldstein, R.A. Weiss and L.A. Liotta. Laser capture microdissection. Science 274:998–1001, 1996.

    Article  PubMed  CAS  Google Scholar 

  97. Bonner, R.F., M.R. Emmert-Buck, K. Cole, T. Pohida, R.F. Chuaqui, S.R. Goldstein and L.A. Liotta. Laser capture microdissection: molecular analysis of tissue. Science 278:1481–1483, 1997.

    Article  PubMed  CAS  Google Scholar 

  98. Simone, N.L., R.F. Bonner, J.W. Gillespie, M.R. Emmert-Buck and L.A. Liotta. Laser-capture microdissection: opening the microscopic frontier to molecular analysis. Trends in Genetics 14:272–276, 1998.

    Article  PubMed  CAS  Google Scholar 

  99. Mies, C. Molecular biological analysis of paraffin-embedded tissues. Human Pathology 25:555–560, 1994.

    Article  PubMed  CAS  Google Scholar 

  100. Singer, V.L., I.J. Jones, S.T. Yue, R.P. Haugland. Characterization of PicoGreen reagent and development of a fluorescence-based solution assay for double-stranded DNA quantification. Analytical Biochemistry 249: 228–238, 1997.

    Article  PubMed  CAS  Google Scholar 

  101. Radford, D.M., Fair, K.L., Phillips, N.J., Ritter, J.H., Steinbrueck, T., Holt, M.S, Donis-Keller, H. Allelotyping of ductal carcinoma in situ of the breast: deletion of loci on 8p, 13q, 16p,17p and 17q. Cancer Research 55:3399–3405, 1995.

    PubMed  CAS  Google Scholar 

  102. Aldaz, C.M., Chen, T., Sahin, A., Cunningham, J. Bondy, M. Comparative allelotype of in situ and invasive human breast cancer: high frequency of microsatellite instability in lobular breast carcinomas. Cancer Res. 55:3976–81, 1995.

    PubMed  CAS  Google Scholar 

  103. Czerniak, B., Chatuverdi, V., Li, L., Hodges, S., Johnston, D., Ro, J., Luthra, R., Logothetis, C., Von Eschenbach, A.C., Grossman, H.B., Benedict, W.R, Batsakis, J.G. Superimposed histologic and genetic mapping of chromosome 9 in progression of human urinary bladder neoplasia: implications for a genetic model of multistep carcinogenesis and early detection of urinary bladder cancer. Oncogene 18:1185–1196, 1999.

    Article  PubMed  CAS  Google Scholar 

  104. Campbell, I.G., Beynon, G., Davis, M., Englefield, P. LOH and mutation analysis of CDKN2 in primary human ovarian cancers. Int. J. Cancer 63:222–225, 1995.

    Article  PubMed  CAS  Google Scholar 

  105. Nakanishi, H., Wang, X-L., Imai F.L., Kato J., Shiiba M., Myia, T., Imai, Y., Tanzawa, H. Localization of a novel tumor suppressor gene loci on chromosome 9p21-22 in oral cancer. Anti Cancer Res. 19:29–34, 1999.

    CAS  Google Scholar 

  106. Murphy, D.S., Hoare S.R, Going, J.J., Mallon, E.A., George W.D., Kaye, S.B. et al. Characterization of extensive genetic alterations in ductal carcinoma in situ by fluorescence in situ hybridization and molecular analysis. J. Natl. Cancer Inst. 87:1694–1704, 1995.

    Article  PubMed  CAS  Google Scholar 

  107. Berns, E.J., Klijn, J.M., Smid, M., Van Staveren, I., Gruis, N.A., Foekens, J.A. Infrequent CDKN2 (MTSl/p16 gene alterations in human primary breast cancer. Br. J. Cancer 72:964–967, 1995.

    Article  PubMed  CAS  Google Scholar 

  108. Quesnel, B., Fenaux, P., Philippe, N., Fournier, J., Bonneterre, J., Preudhomme, C., Peyrat, J.P. Analysis of p16 gene deletion and point mutation in breast carcinoma. Br. J. Cancer 72:351–353, 1995.

    Article  PubMed  CAS  Google Scholar 

  109. Xu, L., Sgroi, D., Christopher, J.S., Beauchamp, R.L., Pinney, D.M., Keel, S., Ueki, K., Rutter, J.L., Buckler, A.J., Louis, D.N., Gusella, J.R, Ramesh, V. Mutational analysis of CDKN2 (MTS1/p16INK4 in human breast carcinomas. Cancer Res. 54:5262–5264, 1994.

    PubMed  CAS  Google Scholar 

  110. Brenner, A.J., Aldaz, M. Chromosome 9p allelic loss and p16/CDKN2 in breast cancer and evidence of p16 inactivation in immortal breast epithelial cells. Cancer Res. 55:2892–2895, 1995.

    PubMed  CAS  Google Scholar 

  111. An, H-X., Niederacher, D., Picard, F., van Roeyen, C., Bender, H.G., Beckmann, M.W. Frequent allele loss on 9p21-22 defines a smallest common region in the vicinity of the CDKN2 gene in sporadic breast cancer. Genes Chrom. Cancer 17:14–20, 1996.

    Article  PubMed  CAS  Google Scholar 

  112. Minobe, K., Onda, M., Iida, A., Kasumi, F., Sakamoto, G., Nakamura, Y., Emi, M. Allelic loss in chromosome 9q is associated with lymph node metastasis of primary breast cancer. Jpn. J. Cancer Res. 89:916–922, 1998.

    Article  PubMed  CAS  Google Scholar 

  113. Cairns, P., Polascik, T.J., Eby, Y., Tokino, K., Califano, J., Merlo, A., Mao, L., Heath, J., Jenkins, R., Westra, W, Rutter, J., Buckler, A., Gabrielson, E., Tockman, M., Cho, K.R., Hedrick, L., Bova, G.S., Isaacs, W., Koc, W., Schwab, D., Sidransky, D. Frequency of homozygous deletion at p16/CDKN2 in primary human tumors. Nat. Genet 11:210–212, 1995.

    Article  PubMed  CAS  Google Scholar 

  114. Dutrilaux, B., Gerbault-Senreau, M., Zafrani, B. Characterization of chromosomal abnormalities in human breast cancer. Cancer Genet Cytogenet, 49:203–217, 1990.

    Article  Google Scholar 

  115. Emmert-Buck, M.R., Bonner, R.R, Smith, P.D., Chuaqui, R.R, Zhuang, Z., Goldstein, S.R., Weiss, R.A., Liotta, L.A. Laser capture microdissection. Science 274:998–1001, 1996.

    Article  PubMed  CAS  Google Scholar 

  116. Bonner, R.F., Emmert-Buck, M., Cole, K., Pohida, T., Chuaqui, R., Goldstein, S., Liotta, L.A. Laser capture microdissection: molecular analysis of tissue. Science 278:1481–1483, 1997.

    Article  PubMed  CAS  Google Scholar 

  117. Simone, N.L., Bonner, R.F., Gillespie, J.W., Emmert-Buck, M.R., Liotta, L.A. Laser capture microdissection: opening the microscopic frontier to molecular analysis. Trends Genet. 14:272–276, 1998.

    Article  PubMed  CAS  Google Scholar 

  118. Wu, Y., Barnabas, N., Russo, I.H., Yang, X., Russo, J. Microsatellite instability and loss of heterozygosity in chromosomes 9 and 16 in human breast epithelial cells transformed by chemical carcinogens. Carcinogenesis 18:1069–1074, 1997.

    Article  PubMed  CAS  Google Scholar 

  119. Muzeau, F., Flejou, J.R, Thomas, G., Hamelin, R. Loss of heterozygosity on chromosome 9 and p16 (MTS1, CDKN2 gene mutations in esophageal cancers. Int. J. Cancer 72:27–30, 1997.

    Article  PubMed  CAS  Google Scholar 

  120. Morita, R., Fujimoto, A., Hatta, N., Takehara, K., Takata, M. Comparison of genetic profiles between primary melanomas and their metastases reveals genetic alterations and clonal evolution during progression. J Invest Dermat. 111:919–924, 1998.

    Article  CAS  Google Scholar 

  121. Deng, G., Lu, Y., Zlotikov, G., Thor, A.D., Smith, H.S. Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science 274:2057–2059, 1996.

    Article  PubMed  CAS  Google Scholar 

  122. Nowell, P.C. The clonal origin of human tumors. Science 194:23–28, 1976.

    Article  PubMed  CAS  Google Scholar 

  123. Fialkow, P.J. Clonal origin of human tumors. Biochem Biophys Acta 458:283–321, 1976.

    PubMed  CAS  Google Scholar 

  124. Noguchi, S., Motomura, K., Inaji, H., Imaoka, S., Koyamma, H. Clonal analysis of human breast cancer by means of the polymerase chain reaction. Cancer Res. 52:6594–6597, 1992.

    PubMed  CAS  Google Scholar 

  125. Teixeira, M.R., Pandis, N., Bardi, G., Andersen, J.A., Mitelman, F., Heim, S. Clonal heterogeneity in breast cancer: karyotypic comparisons of multiple intra and extra-tumorous samples from 3 patients. Int. J. Cancer 63:63–68, 1995.

    Article  PubMed  CAS  Google Scholar 

  126. Teixeira, M.R. Pandis, N., Bardi, G., Andersen, J.A., Heim, S. Karyotypic comparisons of multiple tumors and macroscopically normal surrounding tissue samples from patients with breast cancer. Cancer Res. 56:855–859, 1996.

    PubMed  CAS  Google Scholar 

  127. Pandis, N., Jin, Y., Gorunova, L., Petersson, C., Bardi, G., Idvall, I., Johansson, B., Ingvar, C., Mandahl, N., Mitelman, F., Heim, S. Chromosome analysis of 97 primary breast carcinomas: identification of eight karyotypic subgroups. Genes Chrom. Cancer, 12:173–185, 1995.

    Article  PubMed  CAS  Google Scholar 

  128. Böni, R., Matt, D., Voetmeyer, A., Burg, G., Zhuang, Z. Chromosomal allele loss in primary melanoma is heterogeneous and correlates with proliferation. J. Invest. Dermat. 110:215–217, 1998.

    Article  Google Scholar 

  129. Ornstein, D.K., Englert, C., Gillespie, J.W., Paweletz, C.P., Linehan, W.M., Emmert-Buck, M.R., Petricoin III, E.F. Characterization of intracellular prostate-specific antigen from laser capture microdissected benign and malignant prostatic epithelium. Clin. Cancer Res. 6:353–356, 2000.

    PubMed  CAS  Google Scholar 

  130. Milchgrub, S., Wistuba, I.I., Kim, B.K., Rutherford, C., Urban, J., Cruz Jr, P.D., Gazdar, A.F. Molecular identification of metastatic cancer to the skin using laser capture microdissection. Cancer, 88:749–754, 2000.

    Article  PubMed  CAS  Google Scholar 

  131. Aubele, M., Mattis, A., Zitzelsberger, H., Walch, A., Kremer, M., Hutzler, P., Höfler, H., Werner, M. Intratumoral heterogeneity in breast carcinoma revealed by laser microdissection and comparative genomic hybridization. Cancer Genet Cytogenet, 110:94–102, 1999.

    Article  PubMed  CAS  Google Scholar 

  132. Zhuang, Z., Merino, M.J., Chuaqui, R., Liotta, L.A., Emmert-Buck, M.R. Identical allelic loss on chromosome 11q13 in microdissected in situ and invasive breast cancer. Cancer Res. 55:467–471, 1995.

    PubMed  CAS  Google Scholar 

  133. Radford, D.M., Phillips, N.J., Fair, K.L., Ritter, J.H., Holt, M., Donis-Keller, H. Allelic loss and the progression of breast cancer. Cancer Res. 55:5180–5183, 1995.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Russo, J., Russo, I.H. (2004). Pathogenesis of Breast Cancer. In: Molecular Basis of Breast Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18736-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18736-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62270-0

  • Online ISBN: 978-3-642-18736-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics