Skip to main content

Small Ribonuclease Mimics

  • Chapter
Artificial Nucleases

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 13))

Abstract

Recent progress in investigation of the structures and mechanisms of the function of natural enzymes capable of hydrolyzing p-o bonds in ribonucleic acid is reflected in a number of reviews (Strater et al. 1996; Wilcox 1996; Cowan 1998; Kovall and Matthews 1999). In enzymes, interactions between functional groups of amino acid side radicals result in complex tertiary and quaternary structures that determine the composition of different functional domains of these structural catalysts. The set of amino acids directly involved in catalysis is highly conservative. The amino acids most frequently found in the enzyme active centers are histidine, lysine, arginine, aspartic acid, and glutamic acid residues, their amides, and hydroxyl-containing amino acids. The side chains of these amino acids also form several uniform metallocomplexes with metal ions (Sträter et al. 1996; Hegg and Burstyn 1998; Kozlowski et al. 1999; Kimura 2000). For nucleic acids cleaving enzymes it is suggested that hydrolysis of p-o bonds passes via acid-base catalysis (delCardayre and Raines 1995). In contrast to hydrolysis of c-o bonds, the p-o bonds are very rarely cleaved via nucleophilic catalysis (Gottlin et al. 1998; Iwasaki et al. 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anslyn E, Breslow R (1989) Geometric evidence on the ribonuclease model mechanism J Am Chem Soc 111:5972–5973

    Article  CAS  Google Scholar 

  • Breslow R, Labelle M (1986) Sequential general base-acid catalysis in the hydrolysis of RNA by imidazole J Am Chem Soc 108:2655–2659

    Article  CAS  Google Scholar 

  • Breslow R, Huang DL, Anslyn E (1989) On the mechanism of action of ribonucleases: dinucleotide cleavage catalyzed by imidazole and Zn2+. Proc Natl Acad Sci USA 86(6):1746–1750

    Article  PubMed  CAS  Google Scholar 

  • Cowan JA (1998) Metal activation of enzymes in nucleic acid biochemistry. Chem Rev 98:1067–1088

    Article  PubMed  CAS  Google Scholar 

  • delCardayre SB, Raines RT (1995) A residue hydrogen bond mediates the nucleotide specificity of Ribonuclease A. J Mol Biol 252:328–336

    Article  PubMed  CAS  Google Scholar 

  • Endo M, Hirata K, Ihara T, Sueda S, Takagi M, Komiyama M (1996) RNA hydrolysis by the cooperation of carboxylate ion and ammonium ion. J Am Chem Soc 118:5478–5479

    Article  CAS  Google Scholar 

  • Ferguson CG, Thatcher GRJ (1999) Catalysis and acceleration of acyl transfer by aminocyclodextrins: a biomimetic system of use in enzyme modeling and drug design. Organic Lett 1:829–832

    Article  CAS  Google Scholar 

  • Fersht A (1985) Enzyme structure and mechanism. WH Freeman, New York

    Google Scholar 

  • Giege R, Felden B, Zenkova MA, Sil’nikov VN, Vlassov VV (2000) Cleavage of RNA with synthetic ribonuclease mimics. Methods Enzymol 318:147–165

    Article  PubMed  CAS  Google Scholar 

  • Goggelli E, Valensin G (1990) 1H-and 13C-NMR relaxation investigation of the calcium complex of p-alonyl-L-histidine (carnosine) in aqueous solution. J Chem Soc Perkin Trans 2:401–406

    Google Scholar 

  • Gottlin EB, Rudolph AE, Zhao Y, Matthews HR, Dixon JE (1998) Catalytic mechanism of the phospholipase D superfamily proceeds via a covalent phosphohistidine intermediate Proc Natl Acad Sci USA 95:9202–9207

    Article  Google Scholar 

  • Groß R, Dürner G, Gobel MW (1994) Acceleration of substitution reactions of a phosphoric acid diester by bis(guanidinium) compounds Liebigs Ann Chem P 49–58

    Google Scholar 

  • Han MJ, Yoo KS, Chang JY, Ha TK (2000) 5-(Et-Cyclodextrinylamino)-5-deoxy-Éø-Driboses as models for nuclease, ligase, phosphatase, and phosphorylase.Angew Chem Int Ed Engl 39:347–349

    Article  PubMed  CAS  Google Scholar 

  • Hegg EL, Burstyn IN (1998) Toward the development of metal-based synthetic nucleases and peptidases: a rationale and progress report in applying the principles of coordinat ion chemistry. Coordination Chem Rev 173:133–165

    Article  CAS  Google Scholar 

  • Iwasaki Y, Horiikeai S, Matsushima K, Yamane T (1999) Location of the catalytic nucleophile of phospholipase D of Streptomyces antibioticus in the C-terminal half domain Eur J Biochem 264:577–581

    Article  PubMed  CAS  Google Scholar 

  • Kimura E (2000) Dimetallic hydrolases and their models. Curr Opin Chem Biol 4:207–213

    Article  PubMed  CAS  Google Scholar 

  • Kolchanov NA, Titov II, Vlassova IE, Vlassov VV (1996) Chemical and computer probing of RNAstructure. Prog Nucleic Acid Res Mol Biol 53:131–196

    Article  PubMed  CAS  Google Scholar 

  • Konevetz DA, Beck IE, Silnikov VN, Zenkova MA, Shishkin GV (2000) Chemical ribonucleases, 3. The synthesis of organic catalysts for the phosphodiester bond hydrolysis on the basis of quaternary salt of 1,4-diazabicyclo[2.2.2]octane. Russ J Bioorg Chem 26 (11):765–773

    Article  CAS  Google Scholar 

  • Kovall RA, Matthews BW(1999) Type II rest riction endonucleases: structural, functional and evolutionary relationships. Curr Opin Chem Biol 3:578–583

    Article  PubMed  CAS  Google Scholar 

  • Kozlowski H, Bal W, Dyba M, Kowalik-Jankowska T (1999) Specific structure-stability relations in metallopeptides. Coordination Chem Rev 184:319–346

    Article  CAS  Google Scholar 

  • Krzyzosiak WJ, Marciniec T, Wiewiorowski M, Romby P, Ebel JP, Giege R (1988) Characterization of the lead(II)-induced cleavages in tRNAs in solution and effect of the Ybase removal in yeast tRNAPhe.Biochemistry26/27(15):5771–5777

    Google Scholar 

  • Kurz K, Gobel MW (1996) Hydrolytic Cleavage of TARRNA,the trans-activation responsive region of HIV, by a bis(guanidinium) catalyst attached to arginine. Helv Chim Acta 79:1967–1979

    Article  CAS  Google Scholar 

  • Lorente A, Espinosa JF, Fernandez-Saiz M, Lehn JM, Wilson WD, Zhohg YY(1996) Syntheses of imidazole-acr idine conjugates as Ribonuclease A mimics. Tetrahedron Lett 37:4417–4420

    Article  CAS  Google Scholar 

  • Oost T, Kalesse M (1997) Synthesis of RNase active site model systems using a steroid template. Tetrahedron 53:8421–8438

    Article  CAS  Google Scholar 

  • Podyminogin MA, Vlassov VV, Giege R (1993) Synthetic RNA-cleaving molecules mimicking ribonuclease A active center. Design and cleavage of tRNA transcripts. Nucleic Acids Res 21:5950–5956

    Article  PubMed  CAS  Google Scholar 

  • Prakash TP, Kunta SS, Ganesh KN (1994) Self cleavage of C8-histamino-r(UpA) promoted by ZnCl2: Mechanistic studies or a designed ribonuclease mimic. Tetrahedron 50:11699–11708

    Article  CAS  Google Scholar 

  • Silnikov VV, Lukyanchuk NP, Shishkin GV, Giege R, Vlassov VV (1998) Imidazole containing derivatives mimicking active centers of RNase A. Synthesis and RNAcleavage activity. Dokl Akad Nauk 360:554–558

    Google Scholar 

  • Smith J, Ariga K, Anslyn EV (1993) Enhanced imidazole-catalyzed RNA cleavage induced by a bis-alkylguanidinium receptor. J Am Chem Soc 115:362–364

    Article  CAS  Google Scholar 

  • Strater N, Lipscomb WN, Klabunde T, Krebs B (1996) Two-metal ion catalysis in enzymatic acyl-and phosphoryl-transfer reaction. Angew Chem Int Ed Engl 35:2024–2055.

    Article  Google Scholar 

  • Tung CH, Wei Z, Leibowitz MJ, Stein S (1992) Design of peptide-acridine mimics of ribonuclease activity. Proc Natl Acad Sci USA 89:7114–7118

    Article  PubMed  CAS  Google Scholar 

  • Vishveshwara S, Jacob R, Nadig G, Maizel JV (1998) The role of lysine-41 in RNase A catalysis a quantum chemical study on the active site-ligand complex. J Mol Struct 471:1–11

    Article  CAS  Google Scholar 

  • Werner C, Krebs B, Keith G, Dirheimer G (1976). Specific cleavages of pure tRNAs by plumbous ions. Biochim Biophys Acta 3/432(2):161–75

    Google Scholar 

  • Wilcox DE (1996) Binuclear metallohydrolases. Chem Rev 96:2435–2458

    Article  PubMed  CAS  Google Scholar 

  • Wlodawer A, Bott R, Sjolin L (1982) The refined crystal structure of ribonuclease A at 2.0 Aresolution. J Biol Chem 10/257(3):1325–1332

    Google Scholar 

  • Yan J, Breslow R (2000) An enzyme mimic that hydrolyzes an inactivated ester with catalytic turnover. Tetrahedron Lett 41:2059–2062

    Article  CAS  Google Scholar 

  • Yu J, Zhao Y, Holterman MJ, Venton DL (1999) Combinatorial search of substituted bcyclodextrins for phosphatase-like activity. Bioorgan Medic Chem Lett 9:2705–2710

    Article  CAS  Google Scholar 

  • Zenkova M, Beloglazova N, Sil’nikov V, Vlassov V, Giege R (2001) RNA cleavage by 1,4 diazabicyclo[ 2.2.2]octane-imidazole conjugates. Methods Enzymol 341:468–490

    Article  PubMed  CAS  Google Scholar 

  • Zenkova MA, Chumakova NL, Vlasov AV, Komarova NI, Ven’iaminova AG,Vlasov VV

    Google Scholar 

  • Sil’nikov VN (2000) Synthetic construction, functionally imitating ribonuclease A. Mol Biol 34(3):456–60

    Google Scholar 

  • Zenkova MA, Vlasov AV, Konevets DA, Sil’nikov VN, Giege R, Vlasov VV (2000) Chemical ribonucleases. 2. Design and hydrolytic properties RNase mimetics based on diazabicyclo[ 2.2.2]octane with various positive charges. Bioorg Khim 26(9):679–685

    PubMed  CAS  Google Scholar 

  • Zhdan NS, Kuznetsova IL, Vlasov AV, Sil’nikov VN, Zenkova MA, Vlasov VV (1999) Synthetic ribonucleases. 1. Synthesis and properties of conjugates, containing an RNAbinding fragment based on lysine residues and an RNA hydrolyzing fragment, bearing an imidazole residue. Bioorg Khim 25(1O):723–732

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuznetsova, I.L., Sil’nikov, V.N. (2004). Small Ribonuclease Mimics. In: Zenkova, M.A. (eds) Artificial Nucleases. Nucleic Acids and Molecular Biology, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18510-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18510-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62139-0

  • Online ISBN: 978-3-642-18510-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics