Skip to main content

Allosterically Controlled Ribozymes as Artificial Ribonucleases

  • Chapter
Artificial Nucleases

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 13))

  • 427 Accesses

Abstract

Ribozymes are catalytic RNAs. Representative ribozymes that exist in nature include hammerhead, hairpin, hepatitis delta virus (HDV) and Neurospora VS ribozymes; group I and II introns; the RNA subunit of RNase P; and ribosomal RNA (Birikh et al. 1997; Doudna 1998; Zhou and Taira 1998; Walter and Burke 1998; Carola and Eckstein 1999; Gesteland et al. 1999; Lilley 1999; Scott 1999; Warashina et al. 1999a, 2000a). These ribozymes catalyze a variety of reactions, which include site-specific cleavage and the ligation and polymerization of nucleotides (Cech and Bass 1986; Alberts et al. 1994; Severin et al. 1997; Famulok 1999; Gesteland et al. 1999; Lee et al. 2000; Li and Breaker 1999; Marshall and Ellington 1999; Roberts and Ja 1999; Soukup and Breaker 1999; Wilson and Szostak 1999). RNA catalysis is of particular current interest because of the potential utility of ribozymes, which can cleave specific sequences of interest, as therapeutic agents and as specific regulators of gene expression (Cech 1988; Yu et al. 1995; Bertrand et al. 1997; Birikh et al. 1997; Kawasaki et al. 1998; Lan et al. 1998; Plehn-Dujowich and Altman 1998; Kuwabara et al. 1998a,b, 1999; Koseki et al. 1999; Warashina et al. 1999b; Tanabe et al. 2000a). Both hammerhead and hairpin ribozymes have considerable potential in a clinical setting because of their small size and great specificity. The ability of these ribozymes to cleave target RNA molecules at specific sites makes them useful as inhibitors of viral replication and malignancy (Scanlon 1998; Rossi and Couture 1999; Krupp and Gaur 2000). Large numbers of artificial ribozymes with a great variety of catalytic activities have also been created by in vitro selection procedures (Famulok 1999; Roberts and Ja 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (eds) (1994) Molecular biology of the cell, 3rd edn. Garland, New York

    Google Scholar 

  • Amontov SV, Taira K (1996) Hammerhead minizymes with high cleavage activity: a dimeric structure as the active conformation of minizymes. J Am Chem Soc 118:1624–1628

    Article  CAS  Google Scholar 

  • Araki M, Okuno Y, Hara Y, Sugiura Y (1998) Allosteric regulation of a ribozyme activity through ligand-induced conformational change. Nucleic Acids Res 26:3379–3384

    Article  PubMed  CAS  Google Scholar 

  • Bartram CR, deKlein A, Hagemeijer A, vanAgthoven T, Geurts van Kessel A, Bootsma D, Grosveld G, Ferguson-Smith MA, Davies T, Stone M et al. (1998) Translocation of cab-1 oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukemia. Nature 306:277–280

    Article  Google Scholar 

  • Bertrand E, Pietet R, Grange T (1994) Can hammerhead ribozymes be efficient tools for inactivating gene function? Nucleic Acids Res 22:293–300

    Article  PubMed  CAS  Google Scholar 

  • Bertrand E, Castanotto D, Zhou C, Carbonnnelle C, Lee NS, Good P, Chatterjee S, Grange T, Pictet R, Kohn D, Engelke D, Rossi JJ (1997) The expression cassette determines the functional activity of ribozymes in mammalian cells by controlling their intracellular localization. RNA 3:75–88

    PubMed  CAS  Google Scholar 

  • Birikh KR, Heaton PA, Eckstein F (1997) The structure, function and application of the hammerhead ribozyme. Eur J Biochem 245:1–16

    Article  PubMed  CAS  Google Scholar 

  • Carola C, Eckstein F (1999) Nucleic acid enzymes. Curr Opin Chem Biol 3:274–283

    Article  PubMed  CAS  Google Scholar 

  • Cech TR, Bass BL (1986) Biological catalys is by RNA.Annu Rev Biochem 55:599–629

    Article  PubMed  CAS  Google Scholar 

  • Cech TR (1988) Ribozymes and their medical implications. JAMA 260:3030–3034

    Article  PubMed  CAS  Google Scholar 

  • Cotton M, Birnstiel M (1989) Ribozyme-mediated destruction of RNA in vivo. EMBO J 8:3861–3866

    Google Scholar 

  • Daley GQ, VanEtten RA, Baitimore D (1990) Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247:824–830

    Article  PubMed  CAS  Google Scholar 

  • deThe H, Lavan C, Marchio A, Chomienne C, Degos L, Dejean A (1991) The PML-RAR alpha fusion mRNA gene rated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR.Cell 66:675–684

    Article  PubMed  Google Scholar 

  • Doudna JA (1998) Ribozymes: the hammerhead swings into action. Curr Biol 8:R495–497

    Article  PubMed  CAS  Google Scholar 

  • Eckstein F, Lilley DMJ (eds) (1996) Catalytic RNA. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Famulok M (1999) Oligonucleotide aptamers that recognize small molecules. Curr Opin Struct Biol 9:324–329

    Article  PubMed  CAS  Google Scholar 

  • Fu DJ, Benseler F, McLaughlin LW (1994) Hammerhead ribozymes containing nonnucleoside linkers are active RNA catalysts. J Am Chem Soc 116:4591–4598

    Article  CAS  Google Scholar 

  • Gesteland RF, Cech TR, Atkins JF, (eds) (1999) The RNA world, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Gishizky ML, Witte ON (1992) Initiation of deregulated growth of multipotent progenitor cells by bcr-abl in vitro. Science 256:836–839

    Article  PubMed  CAS  Google Scholar 

  • Grignani F, DeMatteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, Fanelli M, Ruthardt M, Ferrara FF, Zamir I, Seiser C, Grignani F, Lazar MA, Minucci S, Pelicci PG (1998) Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukemia. Nature 391:815–818

    Article  PubMed  CAS  Google Scholar 

  • Groffen J, Stephenson JR, Heisterkamp N, deKlein A, Bartram CR, Grosveld G (1984) Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 6:93–99

    Article  Google Scholar 

  • Guo JQ, Lian JY, Xian YM, Lee MS, Deisseroth AB, Stass SA, Champlin RE, Talpaz M, Wang JY, Arlinghaus RB (1994) BCR-ABL protein expression in peripheral blood celIs of chronic mylogenous leukemia patients undergoing therapy. Blood 83:3629–37

    PubMed  CAS  Google Scholar 

  • Heisterkamp N, Stephenson JR, Groffen J, Hansen PF, deKlein A, Bartram CR, Grosveld G (1983) Localization of the c-abl oncogene adjacent to a translocation break point in chronic myelocytic leukemia. Nature 306:239–242

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Kuwabara T, Warashina M, Toda H, Taira K (2001) Relationships between the activities in vitro and in vivo of various kinds of ribozyme and their intracelIular localization in mammalian celIs. J Biol Chem 276:5378–85

    Google Scholar 

  • Kawasaki H, Ohkawa J, Tanishige N, Yoshinari K, Murata T, Yokoyama KK, Taira K (1996) Selection of the best target site for ribozyme-mediated cleavage within a fusion gene for adenovirus EIA-a ssociated 300 kDa protein (p300) and luciferase. Nucleic Acids Res 24:3010–3016

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki H, Eckner R, Yao TP, Taira K, Chiu R, Livingston OM, Yokoyama KK (1998) Distinct roles of the co-activators p300 and CBP in retinoic-acid-induced F9-cell differentiation. Nature 393:284–289

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki H, Taira K (2002a) Identification of genes that funct ion in the TNF-α-mediated apoptotic pathway using randomized hybrid-ribozyme libraries. Nat Biotechnol 20:376–380

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki H, Taira K (2002b) Identification of genes by hybrid-ribozymes that couple cleavage activity with the unwinding activity of an endogenous RNA helicase. EMBO Rep 3:443–450

    Article  PubMed  CAS  Google Scholar 

  • Koizumi M, Iwai S, Ohtsuka E (1988) Cleavage of specific sites of RNA by designed ribozymes. FEBS Lett 239:285–288

    Article  PubMed  CAS  Google Scholar 

  • Koizumi M, Soukup GA, Kerr JNQ, Breaker RR (1999) Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP.Nat Struct Biol 6:1062–1071

    Article  PubMed  CAS  Google Scholar 

  • Konopka JB, Watanabe SM, Witte ON (1984) An alteration of the human c-abl protein in K562 leukemia celIs unmasks associated tyrosine kinase activity. Cell 37:1035–1042

    Article  PubMed  CAS  Google Scholar 

  • Kore AR, Vaish NK, Kutzke U, Eckstein F (1998) Sequence specificity of the hammerhead ribozyme revisited; the NHH rule. Nucleic Acids Res 26:4116–4120.

    Article  PubMed  CAS  Google Scholar 

  • Koseki S, Takebe T, Tani K, Asano S, Shioda T, Nagai Y, Shimada T, Ohkawa J, Taira K (1999) Factors governing the activity in vivo of ribo zymes transcribed by RNA polymerase III. J Virol 73:1868–1877

    PubMed  CAS  Google Scholar 

  • Krupp G, Gaur RK (eds) (2000) Ribozyme, biochemistry and biotechnology. Eaton, Natick, MA

    Google Scholar 

  • Kuwabara T, Amontov SV, Warashina M, Ohkawa J, Taira K (1996) Characterization of several kinds of dimer minizyme: simultaneous cleavage at two sites in HIV-l tat mRNA by dimer minizymes. Nucleic Acids Res 24:2302–2310

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara T, Warashina M, Tanabe T, Tani K, Asano S, Taira K (1997) Comparison of the specificities and catalytic activities of hammerhead ribozymes and DNA enzymes with respect to the cleavage of BCR-ABL chimeric L6 (b2a2) mRNA.Nucleic Acids Res 25:3074–3082

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara T, Warashina M, Orita M, Koseki S, Ohkawa J, Taira K (1998a) Formation in vitro and in cells of a catalytically active dimer by tRNAval-driven short ribozymes. Nat Biotech 16:961–965

    Article  CAS  Google Scholar 

  • Kuwabara T, Warashina M, Tanabe T, Tani K, Asano S, Taira K (1998b) A novel allosterically trans-activated ribozyme, the maxizyme, with exceptional specificity in vitro and in vivo. Mol Cell 2:617–627

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara T, Warashina M, Nakayama A, Ohkawa J, Taira K (1999) Novel tRNAval_heterodimeric maxizymes with high potential as gene-inactivating agents: Simultaneous cleavage at two sites in HIV-l tat mRNA in cultured cells. Proc Natl Acad Sci USA 96:1886–1891

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara T, Warashina M, Taira K (2000a) Allosterically controllable maxizymes cleave mRNA with high efficiency and specificity. Trends Biotechnol 18:462–8

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara T, Warashina M, Taira K (2000b) Allosterically controllable ribozymes with biosensor functions. Curr Opin Chem Biol 4:669–677

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara T, Warashina M, Koseki S et al. (2001a) Significantly higher activity of a cytoplasmic hammerhead ribozyme than a corresponding nuclear counterpart: Engineered tRNAs with an extended 3′ end can be exported efficiently and specifically to the cytoplasm in mammalian cells. Nucleic Acids Res 29:2780–2788

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara T, Tanabe T, Warashina M, Xiong KX, Tani K, Taira K, Asano S (2001b) Allosterically controllable maxizyme-mediatead suppression of progression of leukemia in mice. Biomacromol 2:1220–1228

    Article  CAS  Google Scholar 

  • Kuwabara T, Hamada M, Warashina M, Taira K (2001c) Allosterically controlled singlechained maxizymes with extremely high and specific activity. Biomacromol 2:788–799

    Article  CAS  Google Scholar 

  • Kuwabara T et al. (2001d) Recognition of engineered tRNAs with an extended 3′ end by exportin-t (Xpo-t) and transport of tRNA-attached ribo zymes to the cytoplasm in somatic cells. Biomacromol 2:1229–1242

    Article  CAS  Google Scholar 

  • Kuwabara T, Warashina M, Taira K (2002) Cleavage of an inacces sible site by the maxizyme with two independent binding arms: an alternative approach to the recruitment of RNA helicases. J Biochem (Tokyo) 132:149–155

    Article  CAS  Google Scholar 

  • Lan N, Howrey RP, Lee SW, Smith CA, Sullenger BA(1998) Ribozyme-mediated repair of sickle beta-globin mRNAs in erythrocyto precursors. Science 280:1593–1596

    Article  PubMed  CAS  Google Scholar 

  • Lee N, Bessho Y, Wei K, Szostak JW, Suga H (2000) Ribozyme-catalyzed tRNA aminoacylation. Nat Struct Biol 7:28–33

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Breaker RB (1999) Deoxyribozymes: new players in the ancient game ofbiocatalysis. Curr Opin Struct Biol 9:315–323

    Article  PubMed  CAS  Google Scholar 

  • Lilley DMJ (1999) Structure, folding and catalysis of the small nucleolytic ribozymes. Curr Opin Struct Biol 9:330–338

    Article  PubMed  CAS  Google Scholar 

  • Long DM, Uhlenbeck OC (1994) Kinetic characterization of intramolecular and intermolecular hammerhead RNAs with stem II deletions. Proc Natl Acad Sci USA 91:6977–6981

    Article  PubMed  CAS  Google Scholar 

  • Marshall KA, Ellington AD (1999) Training ribozymes to switch.Nat Struct Biol 6:992–994

    Article  PubMed  CAS  Google Scholar 

  • Mauro MJ, O’Dwyer ME, Druker BJ (2001) ST1571, a tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia: validation the promise of molecularly targeted therapy. Cancer Chemother Pharmacol 48:S77–S78

    CAS  Google Scholar 

  • McCall MJ, Hendry P, Jennings PA (1992) Minimal sequence requirements for ribozyme activity. Proc Natl Acad Sci USA 89:5710–5714

    Article  PubMed  CAS  Google Scholar 

  • McGlave P, Bartsch G, Anasetti C, Ash R, Beatty P, Gajewski J, Kernan NA (1993) Untreated donor marrow transplanation therapy for chronic mylogenous leukemia: initial experience of the National Marrow Donor Program. Blood 81:543–550

    PubMed  CAS  Google Scholar 

  • Miyagishi M, Taira K (2002) U6 promoter-driven siRNA with four uridine 3’ overhangs efficiently supresses targeted gene expression in mammalian cells. Nat Biotechnol 20:497–500

    Google Scholar 

  • Ohkawa J, Taira K (2000) Control of the functional activity of an antisense RNA by a tetracycline-responsive derivative of the human U6 snRNA promoter. Human Gene Ther 11:577–585

    Google Scholar 

  • Perriman R, Delves A, Gerlach WL (1992) Extended target-site specificity for a hammerhead ribozyme. Gene 113:157–163

    Article  PubMed  CAS  Google Scholar 

  • Plehn-Dujowich D, Altma S (1998) Effective inhibition of influenza virus production in cultured cells by external guide sequences and ribonuclease P.Proc Natl Sci Acad USA 95:7327-7332

    Google Scholar 

  • Prislei S, Buonomo SB, Michienzi A, Bozzoni I (1997) Use of adenoviral VAl small RNA as a carrier for cytoplasmic delivery of ribozymes. RNA6:677–87

    Google Scholar 

  • Roberts RW, Ja WW (1999) In vitro selection of nucleic acids and proteins: what are we learning? Curr Opin Struct Biol 9:521–529

    Article  PubMed  CAS  Google Scholar 

  • Robertson MP, Ellington AD (1999) In vitro selection of an allosteric ribozyme that transduces analytes to amplicons. Nat Biotech 17:62–66

    Article  CAS  Google Scholar 

  • Robertson MP, Ellington AD (2000) Design and optimization of effector-activated ribozyme ligases. Nucleic Acids Res 28:1751–1759

    Article  PubMed  CAS  Google Scholar 

  • Rossi JJ, Couture LA(eds) (1999) Intracellular ribozyme applications. Horizon Scientific Press, Norfolk, UK

    Google Scholar 

  • Rossi JJ, Sarver N (1990) RNA enzymes (ribozymes) as antiviral therapeutic agents. Trends Biotechnol 8:179–183

    Article  PubMed  CAS  Google Scholar 

  • Ruffner DE, Stormo GD, Uhlenbeck OC (1990) Sequence requirements of the hammerhead RNAself-cleavage reaction. Biochemistry 29:10695–10702

    Article  PubMed  CAS  Google Scholar 

  • Rowley JD (1973) A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature 243:290–293

    Article  PubMed  CAS  Google Scholar 

  • Scanlon KJ (ed)(1998) Therapeutic Applications of Ribozymes. Methods in molecular medicine, Human Press,Totowa, NJ

    Google Scholar 

  • Scott WG (1999) RNA structure, metal ions, and catalysis. Curr Opin Chem Biol 3:703–709

    Article  Google Scholar 

  • Severin K, Lee DH, Kennan AJ, Ghadiri MR (1997) A synthetic peptide ligase. Nature 389:706–709

    CAS  Google Scholar 

  • Shimayama T, Nishikawa S, Taira K (1995) Generality of the NUXrule: kinetic analysis of the results of systematic mutations in the trinucleotide at the cleavage site of hammerhead ribozymes. Biochemistry 34:3649–3654

    Article  PubMed  CAS  Google Scholar 

  • Shtivelman E, Lifshitz B, Gale RP, Roe BA, Canaani E (1986) Alternative splicing of RNAs transcribed from the human abl gene and from the bcr-abl fused gene. Cell 47:277–284

    Article  PubMed  CAS  Google Scholar 

  • Snyder DS, McGlave PB (1990) Treatment of chronic myelogenous leukemia with bone marrow transcription. Hematol Oncol Clin North Am 4:535–557

    PubMed  CAS  Google Scholar 

  • Soukup GA, Breaker RR (1999) Nucleic acids molecular switches. Trends Biotechnol 17:469–476

    Article  PubMed  CAS  Google Scholar 

  • Soukup GA, Breaker RR (1999a) Design of allosteric hammerhead ribozymes activated by ligand-induced structure stabilization. Structure 7:783–791

    Article  PubMed  CAS  Google Scholar 

  • Soukup GA, Breaker RR (1999b) Engineering precision RNA molecular switches.Proc Natl Acad Sci USA 96:3584–3589

    CAS  Google Scholar 

  • Soukup GA, Emilsson GAM, Breaker RR (2000) Altering molecular recognition of RNA aptamers by allosteric selection. J Mol Biol 298:623–632

    Article  PubMed  CAS  Google Scholar 

  • Sullenger BA, Lee TC, Smith CA, Ungers GE, Giboa E (1990) Expression of chimeric tRNA-driven antisense transcripts renders NIH 3T3 cells highly resistant to Moloney murine leukemia virus replication. Mol Cell Biol 10:6512–23

    PubMed  CAS  Google Scholar 

  • Takagi Y, Taira K (2002) Detection of a proton-transfer process by kinetic solvent isotope effects in NH/-mediated reactions catalyzed by a hammerhead ribozyme. J Am Chem Soc 15:3850–2

    Article  CAS  Google Scholar 

  • Tanabe T, Kuwabara T, Warashina M, Tani K, Taira K, Asano S (2000a) Oncogene inactivation in a mouse model: tissue invasion by leukaemic cells is stalled by loading them with a designer ribozyme. Nature 406:473–474

    Article  PubMed  CAS  Google Scholar 

  • Tanabe T, Takata I, Kuwabara T, Warashina M, Kawasaki H, Tani K, Ohta S, Asano S, Taira K (2000b) Maxizymes, novel allosterically controllable ribozymes, can be designed to cleave various substrates. Biomacromol 1:108–117

    Article  CAS  Google Scholar 

  • Tang J, Breaker RR (1997) Rational design of allosteric ribozymes. Chem Biol 4:453–459

    Article  PubMed  CAS  Google Scholar 

  • Tang J, Breaker RR (1998) Mechanism for allosteric inhibition of an ATP-sensitive ribozyme. Nucleic Acids Res 26:4214–4221

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Ayers DF, Malmstron TA, McKenzie TL, Ganousis L, Chowrira BM, Couture L, Stinchcomb DT (1995) Improved accumulation and activity of ribozymes expressed from a tRNA-based RNA polymerase III promoter. Nucleic Acids Res 23:2259–2268

    Article  PubMed  CAS  Google Scholar 

  • Tuschl T, Eckstein F (1993) Hammerhead ribozymes: importance of stem-loop II activity. Proc Natl Acad Sci USA 90:6991–6994

    Article  PubMed  CAS  Google Scholar 

  • Walter NG, Burke JM (1998) The hairpin ribozyme: structure, assembly and catalysis. Curr Opin Chem Biol 2:24–30

    Article  PubMed  CAS  Google Scholar 

  • Warashina M, Zhou DM, Kuwabara T, Taira K (1999a) Ribozyme structure and function. Comp Nat Prod Chem 6:235–268

    Article  CAS  Google Scholar 

  • Warashina M, Kuwabara T, Nakamatsu Y, Taira K (1999b) Extremely high and specific activity of DNA enzymes in cells with a Philadelphia chromosome. Chem Biol 6:237–250

    Article  PubMed  CAS  Google Scholar 

  • Warashina M, Takagi Y, Stec WJ, Taira K (2000a) Differences among mechanisms of ribozyme-catalyzed reactions. Curr Opin Biotechnol (2000a) 11:354–362

    Article  PubMed  CAS  Google Scholar 

  • Warashina M, Kuwabara T, Taira K (2000b) Working at the cutting edge: the creation of allosteric ribozymes. Structure 8:207–12

    Article  Google Scholar 

  • Warashina M, Kuwabara T, Kato Y, Sano M, Taira K (2001) RNA-protein hybrid ribozymes that efficiently cleave any mRNA independently of the structure of the target RNA.Proc Natl Acad Sci USA 98:5572–5577

    Article  PubMed  CAS  Google Scholar 

  • West MH, Trempe JP, Tratschin JD, Carter BJ (1987) Gene expression in adeno-associated virus vectors: the effects of chimeric mRNA structure, helper virus and adenovirus VAl RNA.Virology 160:38–47

    Article  PubMed  CAS  Google Scholar 

  • Wilson DS, Szostak JW (1999) In vitro selection of functional nucleic acids. Annu Rev Biochem 68:611–647

    Article  PubMed  CAS  Google Scholar 

  • Yu M, Ojwang J, Yamada O, Hampel A, Rapapport J, Looney D, Wong-Staal F (1993) A hairpin ribozyme inhibits expression of diverse strains of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 90:6340–44

    Article  PubMed  CAS  Google Scholar 

  • Yu M, Leavitt MC, Maruyama M, Yamada O, Young D, Ho AD, Wong-Staal F (1995) Intracellular immunization of human fetal cord blood stem/progenitor cells with a riboz yme against human immunodeficiency virus type 1. Proc Natl Acad Sci USA 92:699–703

    Article  PubMed  CAS  Google Scholar 

  • Zhou DM, Taira K (1998) The hydrolysis of RNA: from theoretical calculations to the hammerhead ribozyme-mediated cleavage of RNA.Chem Rev 98:991–1026

    Article  PubMed  CAS  Google Scholar 

  • Zhou JM, Nakamatsu Y, Kuwabara T, Warashina M, Tanaka Y, Yoshinari K, Taira K (2000) Chemical probing with a weakly alkaline solution of effector-mediated changes in the conformation of a maxizyme. J Inorg Chem 78:261–268

    CAS  Google Scholar 

  • Zoumadakis M, Tabler M (1995) Comparative analysis of cleavage rates after systematic permutation of the NUX consensus tartget motif for hammerhead ribozymes. Nucleic Acids Res 23:1192–1196

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iyo, M., Kawasaki, H., Miyagishi, M., Taira, K. (2004). Allosterically Controlled Ribozymes as Artificial Ribonucleases. In: Zenkova, M.A. (eds) Artificial Nucleases. Nucleic Acids and Molecular Biology, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18510-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18510-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62139-0

  • Online ISBN: 978-3-642-18510-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics