Skip to main content

Site-Specific Artificial Ribonucleases: Conjugates of Oligonucleotides with Catalytic Groups

  • Chapter
Artificial Nucleases

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 13))

Abstract

Design of site-specific artificial ribonucleases is one of the most challenging tasks in RNA targeting (Morrow 1994; Häner et aL 1998; Oivanen et aL 1998; Sil’nikov and Vlassov 2001). Apart from being useful molecular biology tools (Hüber 1993; Giegé et aL 2000), such compounds may provide new opportunities for design of therapeutics targeting specific messenger RNAs and viral genomic RNAs (Uhlmann and Peymann 1990; Komyiama and Sumaoka 1998; Trawick et aL 1998; Crook et aL 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker BF (1993) “Decapitation” of a 5′-capped oligonucleotide by o-phenantroline: Cu(II). J Am Chem Soc 115:3378–3379

    Article  CAS  Google Scholar 

  • Baker BF, Fletcher SR, Iversen LL, Broughton HB (1994) Mechanism of inositol monophosphatase, the putative target of lithium therapy. Proc Natl Acad Sci USA 91:5766–5770

    Article  PubMed  Google Scholar 

  • Baker BF, Ramasamy K, Keily J (1996) New approach in artificial ribonucleases. Bioorg Med Chem Lett 6:1647–1652

    Article  CAS  Google Scholar 

  • Baker BF, Lot SS, Kringel J, Villiet P, Sasmor AM, Chappell LL, Morrow J (1998) Oligonucleotide-europium complex conjugate designed to cleavage the 5′ cap structure of the ICAM-l transcript potentates antisense activity in cells. Nucleic Acids Res 27:1547–1551

    Article  Google Scholar 

  • Baker BF, Lot SS, Kringel J, Cheong-Flournoy Sh, Villiet P, Sasmor HM, Siwkowski AM, Chappell LL, Morrow JR (1999) Oligonucleotide-europium complex conjugate designed to cleave the 2′ cap structure of the ICAM-l transcript potentiates antisense activity in cells. Nucleic Acids Res 27:1547–1551

    Article  PubMed  CAS  Google Scholar 

  • Barbier B, Brack A (1987) Search for catalytic properties of simple polypeptides. Orig Life Evo Biosph 17:381–390

    Article  CAS  Google Scholar 

  • Bashkin JK, Jenkins LA (1994) Effects of metal ions, including Mg2+ and lantanides, on the cleavage of ribonucleotides and RNA model compounds. J Chem Soc Dalton Trans 3631–3637

    Google Scholar 

  • Bashkin JK, Frolova EI, Sampath U (1994) Sequence-specific cleavage of HIV mRNA by a ribozyme mimic.J Am Chem Soc 116:5981–5982

    Article  CAS  Google Scholar 

  • Bashkin JK, Frolova EI, Sampath US (1995) Ribozyme mimics as catalytic antisense reagents. Appl Biochem Biotechnol54:43–55

    Article  PubMed  CAS  Google Scholar 

  • Bashkin JK, Xie J, Daniher AT, Sampath U, Kao JL-F (1996) Building blocks for ribozymes mimics: conjugates of terpyridine and bipyridine with nucleosides. J Org Chem 61:2314–2321

    Article  CAS  Google Scholar 

  • Beloglazova N, Polushin N, Sil’nikov V, Zenkova M, Vlassov V (1999) Site-specific cleavage of yeast tRNAPhe with oligonucleotide conjugates bearing bisimidazole constructs. Dokl Russian Akad Nauk 369:827–830

    CAS  Google Scholar 

  • Beloglazova NG, Sil’nikov VN, Zenkova MA, Vlassov VV (2000) Cleavage of yeast tRNAPhe with complementary oligonucleotide conjugated to a small ribonucleease mimic. FEBS Lett 481:277–280

    Article  PubMed  CAS  Google Scholar 

  • Beloglazova NG, Epanchintsev Alu, Sil’nikov VN, Zenkova MA, Vlasov VV (2002a) Highly efficient site-directed RNA cleavage by imidazole-containing conjugates of antisense oligonucleotides. Mol Biol (Mosk) 36:731–739

    CAS  Google Scholar 

  • Beloglazova NG, Mironova NL, Konevets DA, Petiuk VA, Sil’nikov VN, Vlasov VV, Zenkova MA (2002b) Kinetic parameters of hydrolysis of CpA and UpA sequences in an oligoribonucleotide by compounds functionally mimicking ribonuclease A. Mol Biol (Mosk) 36:1068–1073

    Google Scholar 

  • Bergstrom DE, Chen J (1996) Sequence-specific oligodeoxyribonucleotide cleavage by a major-groove-positioned metal-binding ligand tethered to C-5 of deoxyuridine. Bioorganic Med Chem Lett 6(18):2211–2214

    Article  CAS  Google Scholar 

  • Butorin AS, Grimm GN, Helene C (2000) Methods for attaching unprotected oligonucleotides to DNA-binding, fluorescent or chemically active ligands for synthesis of antisense or gene-targeting agents and probes. Mol Biol (Mosk) 34:946–955

    CAS  Google Scholar 

  • Bruice TC, Tsubouchi A, Dempcy RO, Olson LP (1996) One-and two-metal ion catalysis of adenosine 3′-alkyl phosphate esters. Models for one-and two-metal ion catalysis of RNA hydrolysis. J Am Chem Soc 118:9867–9671

    Article  CAS  Google Scholar 

  • Canaple L, Hüsken D, Häner R (2002) Artificial ribonucleases:Efficient and Specific in vitro cleavage of human c-raf-1 RNA.Bioconjugate Chem 13:945–951

    Article  CAS  Google Scholar 

  • Crook ST (2000) Progress in antisense technology: the end of the beginning. Methods Enzymol 313:3–45

    Article  Google Scholar 

  • Endo M, Azuma Y, Saga Y, Kuzuya A, Kawai G, Komiyama M (1997) Molecular design for a pinpoint RNA scission. Interposition of oligoamines between two DNA oligomers. J Org Chem 62(4):846–852

    Article  CAS  Google Scholar 

  • Ehresmann C, Baudin F, Mougel M, Romby P, Ebel JP, Ehresmann B (1987) Probing the structure of RNAsin solution. Nucleic Acids Res 15:9109–9128

    Article  PubMed  CAS  Google Scholar 

  • Giegé R, Felden B, Sil’nikov VN, Zenkova MA, Vlassov VV (2000) Cleavage of RNA with synthetic ribonuclease mimics. Methods Enzymol 318:147–165

    Article  PubMed  Google Scholar 

  • Grimm GN, Boutorine AS, Helene C (2000) Rapid routs of synthesis of oligonucleotide conjugates from non-protected oligonucleotides and ligands possessing different nucleophic or electrophilic functional groups. Nucleosides Nucleotides 19:1943–1953

    Article  CAS  Google Scholar 

  • Hall J, Hüsken D, Pieles U, Moser HE, Haner R (1994) Efficient sequence-specific cleavage of RNA using novel europium complexes conjugated to oligonucleotides. Chem Biol 1:185–190

    Article  PubMed  CAS  Google Scholar 

  • Hall J, Hüsken D, Haner R (1996) Towards artificial ribonucleases: the sequence-specific cleavage of RNA in a duplex. Nucleic Acids Res 24:3522–3526

    Article  PubMed  CAS  Google Scholar 

  • Häner R, Hall J (1997) The Sequence-specific cleavage of RNA by artificial chemical ribonucleases. Antisense Nucleic Acid Drug Dev 7:423–430

    Article  PubMed  Google Scholar 

  • Häner R, Hall J, Pfützer A, Hüsken D (1998) Development of artificial ribonucleases. Pure Appl Chem 70:111–116

    Article  Google Scholar 

  • Hendry P, Sargeson AM (1990) Transesterification of phosphate diesters by divalent and trivalent metal ions. Prog Inorg Chem 38:201–205

    Article  CAS  Google Scholar 

  • Hovinen J (1998) Synthesis of carbon-3-substituted 1,5,9-triazacyclododecanes, RNA cleavage agents suitable for oligonucleotide tethering. Bioconjugate Chem 9:132–136

    Article  CAS  Google Scholar 

  • Hovinen J, Guzaev A, Azhayeva E, Azhaev A, Lönnberg H (1995) Imidazole tethered oligodeoxyribonucleotides: synthesis and RNA cleaving activity. J Org Chem 60:2205–2209

    Article  CAS  Google Scholar 

  • Hüber PW (1993) Chemical nucleases: their use in studying RNA structure and RNAprotein interactions. FASEB J 7:1367–1375

    PubMed  Google Scholar 

  • Hüsken D, Goodall G, Blommers MJJ, Jahnke W, Hall J, Haner R, Moser HE (1996) Creating RNAbulges: cleavage of RNA in RNA/DNA duplexes by metal ion catalysis. Biochemistry 35:16591–16600

    Article  PubMed  Google Scholar 

  • Hüsken D, Deichert A, Hall J, Haner R (1999) Combinatorial Library of artificial ribonucleases. Nucleosides Nucleotides 18:1507–1511

    Article  Google Scholar 

  • Inoue H, Shimusu M, Furukawa T, Tamura T, Matsui M, Ohtsuka E (1999) Site-specific RNA cleavage using terperedine-Cu(II)-linked 2′-O-methyloligonucleotides. Nucleosides Nucleotides 18:1503–1505

    Article  CAS  Google Scholar 

  • Jenkins LA, Bashkin JK, Autry ME (1996) The embedded ribonucleotide assay: a chimeric substrate for studying cleavage of RNA by transesterification. J Am Chem Soc 118:6822–6825

    Article  CAS  Google Scholar 

  • Jones DR, Lindoy LF, Sargeson AM (1983) Rare earth metal ions for unprecedentedly fast RNA hydrolysis. J Am Chem Soc 105:7327–7331

    Article  CAS  Google Scholar 

  • Karygin AYu, Abramova TV, Sil’nikov VN, Shishkin GV (2000) Reagents for directed modification of biopolymers. Izv Akad Nauk Se. Khim (Russian) 540–545

    Google Scholar 

  • Kaukinen U, Lyytikainen S, Mikkola S, Lönnberg H (2002) The reactivity of phosphodiester bonds within linear single-stranded oligoribonucleotides is strongly dependent on the base sequence. Nucleic Acids Res 30:468–474

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Sussman JL, Suddath FL, Quigley GJ, McPherson A, Wang AH, Seeman NC, Rich A (1974) The general structure of transfer RNA molecules. Proc Natl Acad Sci USA 71(12):4970–4974

    Article  PubMed  CAS  Google Scholar 

  • Komiyama M (1995) Sequence-specific and hydrolytic scission of DNA and RNA by lanthanide complex-oligoDNA hybrids. J Biochem 118:665–670

    PubMed  CAS  Google Scholar 

  • Komiyama M, Inokawa T (1994) Selective hydrolysis of tRNA by ethylenediamine bound to a DNA oligomer. J Biochem 116:719–720

    PubMed  CAS  Google Scholar 

  • Komiyama M, Sumaoka J (1998) Progress towards synthetic enzymes for phosphoester hydrolysis. Curr Opin Chem Biol 2:751–757

    Article  PubMed  CAS  Google Scholar 

  • Komiyama M, Inokawa T, Shiiba T, Takeda N, Yoshinari K, Yashiro M (1993) Molecular design of artificial hydrolytic nucleases and ribonucleases. Nucleic Acids Symp Ser 29:197–198

    PubMed  CAS  Google Scholar 

  • Komiyama M, Inokawa T, Yoshinari K (1995) Ethylendiamine-oligo DNA hybrid as sequence-selective artificial ribonuclease. J Chem Soc Chem Commun 115:2237–2239

    Google Scholar 

  • Konevetz DA, Beck IA, Beloglazova NG, Sulimenkov IV, Sil’nikov VN, Zenkova MA, Shishkin GV, Vlassov VV (1999) Artificial ribonucleases: synthesis and RNA cleaving properties of cationic conjugates bearing imidazole residues. Tetrahedron 55:503–514

    Article  CAS  Google Scholar 

  • Kumazawa Y, Yokogawa T, Tsirui H, Miura K, Watanabe K (1992) Effect of the higher-order structure of tRNAs on the stability of hybrids with oligodeoxyribonucleotides: separation of tRNA by an efficient solution hybridization. Nucleic Acids Res 20:2223–2232

    Article  PubMed  CAS  Google Scholar 

  • Kuzuya A, Azura Y, Inokawa T, Yoshinari K, Komiyama M (1997) Sequence-selective RNA scission by oligoamine-DNA conjugates. Nucleic Acids Symp Ser 37:209–210

    PubMed  CAS  Google Scholar 

  • Lermer L, Roupioz Y, Ting R, Perrin D (2002) Toward an RNAse mimic: a DNAzyme with imidazoles and cationic amines. J Am Chem Soc 124:9960–9961

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Zhao Y, Hatfield S, Wan R, Zhu Q, Li X, McMills M, Ma Y, Li J, Brown KL, He C, Liu F, Chen X (2000) Dipeptide Seryl-Histidine and related oligopeptides cleave DNA, protein and carboxyl ester. Bioorgan Med Chem 8:2675–2680

    Article  CAS  Google Scholar 

  • Magda D, Miller RA, Sessler JL, Iverson BL (1994) Site-specific hydrolysis of RNA by Europium(III) texaphyrin conjugated to a synthetic oligodeoxyribonucleotide. J Am Chem Soc 116:7439–7440

    Article  CAS  Google Scholar 

  • Magda D, Crofts S, Lin A, Miles D, Wright M, Sessler JL (1997a) Synthesis and kinetic properties of ribozyme analogues prepared using phosphoroamidite derivatives of dysprosium(III) texaphyrin. J Am Chem Soc 119:2293–2294

    Article  CAS  Google Scholar 

  • Magda D Wright M, Crofts S, Lin A, Sessler JL (1997b) Metal complex conjugates of antisense DNA which display ribosyme-like activity. J Am Chem Soc 119:6947–6948

    Article  CAS  Google Scholar 

  • Matsuda S, Ishikubo A, Kuzuya A, Yashiro M, Komiyama M (1998) Conjugates of dinuclear zinc(II) complex and DNA oligomers as novel sequence-selective artificial ribonucleases. Angew Chem Int Ed 37:3284–3286

    Article  CAS  Google Scholar 

  • Matsumura K, Endo M, Komyiama M (1994) Lantanide complex-oligo-DNA hybrid for Sequence-selective hydrolysis of RNA. J Chem Soc Chem Commun 1984:219–220

    Google Scholar 

  • Mestre B, Jakobs A, Pratviel G, Meunier B (1996) Structure nuclease activity relationships of DNA cleavers based on cationic metalloporphyrin-oligonucleotide conjugates. Biochemistry 35:9140–9149

    Article  PubMed  CAS  Google Scholar 

  • Michaelis K, Kalesse M (1999) Selective Cleavage of the HIV-1 TAR-RNA with a peptidecyclen conjugate. Angew Chem Int Ed Eng 38:2243–2245

    Article  CAS  Google Scholar 

  • Mikkola S, Kaukinen U, Lonnberg H (2001) The effect of secondary structure on cleavage of the phosphodiester bonds of RNA. Cell Biochem Biophys 34:95–119

    Article  PubMed  CAS  Google Scholar 

  • Mironova NL, Pyshnyi DV, Ivanova EM, Zarytova VF, Zenkova MA, Gross HJ, Vlassov VV (2002) Sequence-specific cleavage of the target RNA with oligonucleotide-peptide conjugates. Russ Chem Bull 51:1177–1186

    Article  CAS  Google Scholar 

  • Modak AS, Gard JK, Merriman MC, Winkeler KA, Bashkin JK, Stern MK (1991) Toward chemical ribonucleases. 2. Synthesis and characterization of nucleoside-bipyridine conjugates; hydrolytic cleavage of RNA by their copper(II) complexes. J Am Chem Soc 113:283–291

    Article  CAS  Google Scholar 

  • Morrow JR, Buttery LA, Shelton VM, Barback KA (1992) Efficient catalytic cleavage of RNA by lanthanide(III) macro cyclic complexes: toward synthetic nucleases for in vivo applications. J Am Chem Soc 114:1903–1907

    Article  CAS  Google Scholar 

  • Morrow LR (1994) Artificial ribonucleases.Adv Inorg Chem 9:41–74

    CAS  Google Scholar 

  • Muche M-S, Gobel MW (1996) Artificial DNA and RNA cleavage conjugate based on organic constructs. Angew Chem Int Ed Engl 35:2126–2128

    Article  CAS  Google Scholar 

  • Olivanen M, Kuusela S, Lonnberg H (1998) Kinetics and mechanisms for the cleavage and isometization of the phosphodiester bonds of RNA by Bronsted Acids and Bases. Chem Rev 98:961–990

    Article  Google Scholar 

  • Perrin DM, Garestier Th, Helene C (2001) Bridging the Gap between Proteins and Nucleic Acids: A Metal-Independent RNAse A Mimic with Two Protein-Like Functionalities. J Am Chem Soc 123:1556–1563

    Article  PubMed  CAS  Google Scholar 

  • Petuyk VA, Zenkova MA, Giege R, Vlassov VV (1999) Hybridization of antisense oligonucleotides with the 3′-part of tRNAPhe. FEBS Lett 12:217–222

    Article  Google Scholar 

  • Podyminogin MA, Vlassov VV, Giege R (1993) Synthetic RNA-cleaving molecules mimicking ribonuclease A active center. Design and cleavage of tRNA transcripts. Nucleic Acids Res 21:5950–5956

    Article  PubMed  CAS  Google Scholar 

  • Polushin NN, Chen B, Anderson LW, Cohen JS (1993) Synthesis and characterization of imidazoyl-linked synthons and 3′-conjugated thymidine derivatives. J Org Chem 58:4606–4613

    Article  CAS  Google Scholar 

  • Polushin N (2000) The precursor strategy: terminus methoxyoxalamido modifiers for single and multiple functionalization of oligodeoxyribonucleotides. Nucleic Acids Res 28(16):3125–3133

    Article  PubMed  CAS  Google Scholar 

  • Pyshnyi D, Repkova M, Lokhov S, Ivanova E, Venyaminova A, Zarytova VF (1997a) Oligonucleotide-peptide conjugates for RNA cleavage. Nucleosides Nucleotides 16:1571–1574

    Article  CAS  Google Scholar 

  • Pyshnyi DV, Repkova MN, Lokhov SG, Ivanova EM, Ven’iaminova AG, Zarytova VF (1997b) Artificial ribonucleases 1. Targeted RNA cleavage by 5′-peptidyloligodeoxyribonucleotides containing arginine and leucine residues. Bioorg Khim 23(6):497–504

    CAS  Google Scholar 

  • Raines RT (1998) Ribonuclease A. Chem Rev 98:1045–1065

    Article  PubMed  CAS  Google Scholar 

  • Reynolds MA, Beck TA, Say PB, Schwartz DA, Dwyer BP, Daily WJ, Vaghefi MM, Metzler MD, Klem RE, Arnold LJ (1996) Antisense oligonucleotide containing an internal, non-nucleotide-based linker promote site-specific cleavage of RNA. Nucleic Acids Res 24:760–765

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto S, Tamura T, Furukawa T, Komatsu Y, Ohtsuka E, Kitamura M, Inoue H (2003) Highly efficient catalytic RNA cleavage by the cooperative action of two Cu(II) complexes embodied within an antisense oligonucleotide. Nucleic Acids Res 3195:1416–1425

    Article  Google Scholar 

  • Serikov RN, Petyuk VA, Vlassov VV, Zenkova MA (2002) Hybridization of antisense oligonucleotides with yeast tRNAPhe: factors determining the efficiency of interaction. Russ Chem Bull 51:1156–1165

    Article  CAS  Google Scholar 

  • Shelton VM, Morrow JR (1991) Catalytic transesterification and hydrolysis of RNA by zinc(II) complexes. Inorg Chem 30:4295–4296

    Article  CAS  Google Scholar 

  • Sil’nikov VN, Zuber G, Behr JP, Giege R, Vlassov VV (1996) Design of ribonuclease mimics for sequence specific cleavage of RNA. Phosphorus Sulfur Silicon 109/110:277–280

    Article  Google Scholar 

  • Sil’nikov VN, Vlassov VV (2001) Design of site-specific RNA-cleaving reagents. Russ Chem Rev 70:491–508

    Article  CAS  Google Scholar 

  • Smith TH, LaTour JV, Bochkariov D, Chaga G, Nelson P (1999) Bifunctional phosphoramidite reagents for the introduction of histidyl and dihistidyl residues into oligonucleotides. Bioconjugate Chem 10:547–652

    Article  Google Scholar 

  • Trawick BN, Daniher AT, Bashkin JK (1998) Inorganic mimics of ribonucleases and ribozymes: from random cleavage to sequence-specific chemistry to catalytic antisense drugs. Chem Rev 98:939–960

    Article  PubMed  CAS  Google Scholar 

  • Uhlmann E, Peymann A (1990) Antisense oligonucleotide: a new therapeutic principle. Chem Rev 90:544–584

    Article  Google Scholar 

  • Ushijima K, Takaku H (1998) Site-specific cleavage of tRNA by imidazole andlor primary amine groups bound at the 5’-end of oligodeoxyribonucleotides. Biochem Biophys Acta 1379:217–223

    Article  PubMed  CAS  Google Scholar 

  • Ushijima K, Shirakawa M, Kagoshima K, Park W-S, Miyano-Kurosaki N, Takaku H (2001) Anti-HIV-1 activity of an antisense phosphorotioate oligonucleotide bearing imidazole and primary amine group. Bioorganic Medical Chemistry 9:2165–2169

    Article  CAS  Google Scholar 

  • Verheijen JC, Deiman BALM, Yeheskiely E, van der Marel G, van Boom J (2000) Efficient hydrolysis of RNA by a PNA-diethylentriamine adduct. Angew Chem Int Ed 39(2):369–372

    Article  Google Scholar 

  • Verbeure B, Lacey CJ, Froeyen M, Rozenski T, Herdewijn P (2002) Synthesis and cleavage experiments of oligonucleotide conjugates with a diimidazole-derived catalytic center. Bioconjugate Chem 13(2):335–350

    Google Scholar 

  • Vlassov VV, Zuber G, Felden B, Behr T, Giege R (1995) Cleavage of tRNA with imidazole and spermine imidazole constructs: a new approach for probing RNA structure. Nucleic Acids Res 23:3161–3167

    Article  PubMed  CAS  Google Scholar 

  • Vlassov V, Abramova T, Godovikova T, Giege R, Sil′nikov V (1997) Sequence-specific cleavage of yeast tRNAPhe with oligonucleotides conjugated to a diimidazole construct. Antisense Nucleic Acid Drug Dev 7:39–42

    Article  PubMed  CAS  Google Scholar 

  • Vlassov VV, Sil′nikov VN, Zenkova MA (1998) Chemical ribonucleases. Mol Biol (Mosk) 32:62–70

    Google Scholar 

  • Weiner DP, Wiemann T, Wolfe MMP, Wentworth P, Janda KD (1997) A pentacoordinate oxorhenium(V) metallochelate elicits antibody catalysts for phosphodiester cleavage. J Am Chem Soc 119:4088–4089

    Article  CAS  Google Scholar 

  • Yoschinari K, Yamazaki K, Komiyama M (1991) Oligoamines as a simple and efficient catalysts. J Am Chem Soc 113:5899–5901

    Article  Google Scholar 

  • Yurchenko L, Sil′nikov V, Godovikova T, Shishkin G, Toulme J-J, Vlassov V (1997) Cleavage of Leishmania mini-exon sequence by oligonucleotides conjugated to a diimidazole construction. Nucleosides Nucleotides 16:1741–1745

    Article  Google Scholar 

  • Zagórowska I, Kuusela S, Lönnberg H (1998) Metal ion-dependent hydrolysis of RNA phospho diester bond within hairpin loops. A comparative kinetic study on chimeric ribo/2′-0-methylribo oligonucleotides. Nucleic Acids Res 26:3392–3396

    Article  PubMed  Google Scholar 

  • Zagórowska I, Mikkola S, Lönnberg H (1999) Hydrolysis of phospho diester bonds within RNA hairpin loops in buffer solutions: the effect of secondary structure on the inherent reactivity of RNA phosphdiester bonds. Helv Chim Acta 82:2105–2111

    Article  Google Scholar 

  • Zenkova MA, Petuyk VA, Giege R, Vlassov VV (1998) Unfolding of the tRNAPhe structure by complementary oligonucleotides. Dokl Akad Nauk 361:260–263

    PubMed  CAS  Google Scholar 

  • Zenkova M, Beloglazova N, Sil′nikov V, Vlassov V, Giege R (2001) RNA cleavage by 1,4-diazabicyclo[2.2.2]octane-imidazole conjugates. Methods Enzymol 341:468–490

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zenkova, M.A., Beloglazova, N.G. (2004). Site-Specific Artificial Ribonucleases: Conjugates of Oligonucleotides with Catalytic Groups. In: Zenkova, M.A. (eds) Artificial Nucleases. Nucleic Acids and Molecular Biology, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18510-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18510-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62139-0

  • Online ISBN: 978-3-642-18510-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics