Skip to main content

Electrical Methods of Force Measurement

  • Chapter
Handbook of Force Transducers

Abstract

The nonelectric force measuring methods are history already. Anyway, the mechanic, pneumatic or hydraulic devices do not have the sensitivity of the electronic ones, as no physical phenomenon directly transforms force into electric signal [2.1]. Force is a mechanical measurand, and its applying modifies the electric, magnetic, acoustic and/or optical properties of specific materials. The key component within the measurement system is the transducer (Fig. 2.1), which can use various measurement principles or methods. The most convenient description of the transducer field is offered by the physics-oriented approach [2.2]. There are generally accepted six signal domains containing the main physical parameters: mechanical (acoustic included), thermal, electrical, magnetic, radiant (optical), and chemical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kersten, J.: Innovative Load Cell Technology. Application Note ISWM, Revere Transducers Europe, Breda, The Netherlands (1995)

    Google Scholar 

  2. Middelhoek, S., Audet, S.A.: Silicon Sensors. Academic Press Ltd (Harcourt Brace Jovanovich Publishers), London (1989)

    Google Scholar 

  3. van Putten, A.F.P.: Electronic Measurement Systems. Prentice Hall, New York (1988)

    Google Scholar 

  4. Culsaw, B.: Smart Structures and Materials. Artech House, Boston (1996)

    Google Scholar 

  5. Busch-Vishniac, I.J.: Electromechanical Sensors and Actuators. Springer, Heidelberg (1999)

    Google Scholar 

  6. Isihara, H., Arai, F., Fukuda, T.: Micro mechatronics and micro actuators. IEEE/ASME Transactions on Mechatronics 1(1), 68–79 (1996)

    Article  Google Scholar 

  7. Porter, T.L., Delinger, W.: Electronics for LabView based piezoresistive micro-cantilever sensor system. Sensors & Transducers Magazine 68(6), 568–574 (2006)

    Google Scholar 

  8. Carson, R.: Blavatsky’s foreknowledge of the wave / particle duality of light (1996-2004), http://www.seekerbooks.com

  9. Blignault, C., Hattingh, D.G., Kruger, G.H., van Niekerk, T.I., James, M.N.: Friction stir weld process evaluation by multi-axial transducer. Measurement 41, 32–43 (2008); ScienceDirect

    Article  Google Scholar 

  10. Lin, Z.-C., Huang, J.-C.: A study of the estimation method of the cutting force for a conical tool under nanoscale depth of cut by molecular dynamics. Nanotechnology 19, Paper 115 701 (2008)

    Google Scholar 

  11. Chen, Y., Yang, J., Wang, X., Ni, Z., Li, D.: Temperature dependence of frictional force in carbon nanotube oscillators. Nanotechnology 20, Paper 035704 (2009)

    Google Scholar 

  12. Bau, H.H., de Rooij, N.F., Kloeck, B. (eds.): Mechanical Sensors. VCH, Weinheim (1994)

    Google Scholar 

  13. Fraden, J.: Handbook of Modern Sensors – Physics, Design and Applications, 3rd edn. Springer, Heidelberg (2004)

    Google Scholar 

  14. Usher, M.J., Keating, D.A.: Sensors and Transducers – Characteristics, Applications, Instrumentation, Interfacing, 2nd edn. MacMillan, Houndmills (1996)

    Google Scholar 

  15. Sze, S.M.: Semiconductor Sensors. John Wiley & Sons, Inc., New York (1994)

    Google Scholar 

  16. Vervuren, W.: Loadcells and their environment. In: Kemény, T., Havrilla, K. (eds.) Force Measurement and Weighing in the 90s. IMEKO TC Event Series, vol. 29, pp. 189–195. MTESZ Házinyomda, Budapest, 1104-91

    Google Scholar 

  17. Stein, P.K.: The Unified Approach to the Engineering of Measurement Systems for Test and Evaluation; Part I – Basic Concepts. Fifth Printing with Revisions, Stein Engineering Services, Inc., Phoenix, AZ (1995)

    Google Scholar 

  18. Bray, A., Barbato, G., Levi, R.: Theory and Practice of Force Measurement. Academic Press, London (1990)

    Google Scholar 

  19. Peters, M.: Force measurement, present and future. In: Proc. IMEKO XIIIth World Congress, Turin, Italy, September 5-9, vol. III, pp. 2295–2296 (1994)

    Google Scholar 

  20. Zegnini, B., Boudou, L., Martinez-Vega, J.: An optical technique to measure the induced mechanical strain by a DC electric field in thin organic insulating film. In: Proc. 15th IMEKO TC-4 Symp. Novelties in Electrical Measurements and Instrumentation, Jassy, Romania, September 19-21, vol. II, pp. 387–390 (2007) ISBN 978-973-667-260-6

    Google Scholar 

  21. Norton, H.N.: Sensor Selection Guide, 1st edn. Elsevier Sequia S.A., Lausanne, Switzerland (1983)

    Google Scholar 

  22. Pallás-Areny, R., Webster, J.G.: Sensors and Signal Conditioning. John Wiley & Sons, Inc., New York (1991)

    Google Scholar 

  23. Khazan, A.D.: Transducers and Their Elements. Prentice Hall Inc., A Pearson Education Company, Upper Saddle River, NJ (1994)

    Google Scholar 

  24. Baudendistel, T.A.: Force sensor, strain sensor and methods for measuring same. US Patent 2006 0137464, June 29 (2006)

    Google Scholar 

  25. Seippel, R.G.: Transducers, Sensors & Detectors. Prentice Hall, Reston Publishing Company, Reston (1983)

    Google Scholar 

  26. Biétry, L., Kochsiek, M.: Mettler Wägelexikon. Praktischer Leitfaden der wägetechnischen Begriffe. Mettler Instrumente AG, Greifensee, Switzerland, ME-720113-84

    Google Scholar 

  27. 823 DP series d/p Cell Transmitter – Competitive comparisons. Foxboro Company, Foxboro, MA, TI 37-75

    Google Scholar 

  28. Dolga, V.: Sensors and Transducers for Industrial Robots. Editura Eurobit, Timişoara (1999) (in Romanian); ISBN 973-99-227-9-1

    Google Scholar 

  29. Pantelimon, B., Iliescu, C.: Mesures électriques et transducteurs, Tome 2. Editura Matrix, Bucureşti, Romania (2006)

    Google Scholar 

  30. Horn, K.: Elektrische Messung von Kräften und Drücken. VDI-Berichte Nr. 54, pp. 11-19 (1961)

    Google Scholar 

  31. Horn, K.: Physikalische Prinzipien für elektromechanische Wägezellen – Aufnehmerprinzipien für die Umformung der mechanischen Meßgröße ’KRAFT’ in elektrisch nutzbare Meßgrößen. wd – wägen & dosieren, Heft 1, S.5–S.16, Deutschland (1976)

    Google Scholar 

  32. Horn, K.: Wägeprinzipien. In: Kochsiek, M. (ed.) Handbuch des Wägens, 2. Auflage. Friedrich Vieweg & Sohn, Braunschweig – Wiesbaden (1989)

    Google Scholar 

  33. Horn, K.: Design of sensors with very high stiffness. In: Proc. 15th Int’l Conf. on Accuracy Assurance in Force, Torque and Mass Measurements, Madrid, Spain, October 7-11, pp. 285–294 (1996)

    Google Scholar 

  34. Theiß, D.: Die Wägezelle: Von Wägegut zum Meßsignal. Auszug aus: ’Industrielle Wägetechnik’ von A. Schuster, Eigenverlag Schenck, S21–S36, Darmstadt (1983)

    Google Scholar 

  35. Paetow, J.: Weighing cell and force transducer – there is a difference. Private discussions at Hottinger Baldwin Messtechnik GmbH in Darmstadt, West Germany (November 1987)

    Google Scholar 

  36. Tilmans, H.A.C.: Micro-mechanical sensors using encapsulated built-in resonant strain gauges. PhD dissertation, Twente University of Enschede (1993)

    Google Scholar 

  37. Blom, F.R.: Resonant silicon beam force sensor. PhD dissertation, Twente University of Enschede, The Netherlands (1989)

    Google Scholar 

  38. Mansfield, P.H.: Electrical Transducers for Industrial Measurement. Butterworth, London (1973)

    Google Scholar 

  39. Morrison, T.P.: The Art of Computerized Measurement. Oxford University Press, Oxford (1997)

    Google Scholar 

  40. Hunt, A. (Coord.): Guide to the Measurement of Force. The Institute of Measurement and Control, London, UK (Published 1998); ISBN 0-904457-28-1

    Google Scholar 

  41. Cuscó, L. (Coord.): Guide to the Measurement of Pressure and Vacuum. The Institute of Measurement and Control, London, UK (Published 1998)

    Google Scholar 

  42. Škundrić, S., Kovačević, D.: Electromehaničke vage (Merenje mase mernim pretvaračima sile na basi tenzometarskih traka). Štampa BMG, Beograd, Serbia (1995)

    Google Scholar 

  43. October 15 (2009), http://www.en.wikipedia.org/wiki/Radiometer

  44. Britannica Online Encyclopedia, October 15 (2009), http://www.britannica.com/EBchecked/topic/602499/transducer

  45. Lipták, B.G. (ed.): Instrument Engineers’ Handbook: Process Measurement and Analysis, 4th edn., pp. 758–759. CRC Press – ISA, Boca Raton, FL (2003)

    Google Scholar 

  46. Gast, T.: The impact of feedback on the determination of masses and forces in controlled atmospheres. Termochimica Acta 236, 277–290 (1994)

    Article  Google Scholar 

  47. Reber, D.: Electrodynamic force compensation devices in mass comparators. In: Proc. 13th Int’l Conf. Force and Mass Measurement, Helsinki, Finland, May 11-14, pp. 205–210 (1993)

    Google Scholar 

  48. Maki, S., Ataka, M.: Magnetization force sensor. Rev. Sci. Instrum. 76, Paper 066106 (2005)

    Google Scholar 

  49. Koch, S.J., Thayer, G.E., Corwin, A.D., de Boer, M.P.: Micromachined piconewton force sensor for biophysics investigations. Applied Physics Letters 89, Paper 173901 (2006)

    Google Scholar 

  50. Ohlig, B., Giering, W.: Device for the detection of an actuation force of a brake pedal and brake system. European Patent EP1608940-2005

    Google Scholar 

  51. Grzic, R.: Seat belt force sensor. European Patent EP1350681-2003

    Google Scholar 

  52. Selig K.P., Wurster K.: Force transducers. US Patent 2006 0053898, March 16 (2006)

    Google Scholar 

  53. Carignan, F.J.: Displacement / force transducers utilizing Hall effect sensors. Data supplied from the worldwideesp@cenet database WO9318380-1993

    Google Scholar 

  54. Zabler, E., Heintz, F.: Neue, alternative Lössungen für Drehzahlsensoren im Kraftfahrzeug auf magnetoresistiver Basis. Artikel 9.8, Sensoren Technologie und Anwendung, Bad Nauheim, Deutschland (1984)

    Google Scholar 

  55. Campanella, H., Plaza, J.A., Montserrat, J., Uranga, A., Esteve, J.: High-frequency sensor technologies for inertial force detection based on thin-film bulk acoustic wave resonators (FBAR). Microelectronic Engineering 86(4), 1254–1257 (2009)

    Article  Google Scholar 

  56. Fillatreau, P., Bernard, F.X., Aztiria, A., Sáenz de Argandoña, E., García, C., Arana, N., Izaguirre, A.: Sheet metal forming global control system based on artificial vision system and force–acoustic sensors. Robotics and Computer-Integrated Manufacturing 24(6), 780–787 (2008)

    Article  Google Scholar 

  57. Pedersen, M.: Electrostatic acoustic transducer based on rolling contact micro actuator. Data supplied from the worldwideesp@cenet database WO2007078433-2007

    Google Scholar 

  58. Isebrand, S., Powel, J.: Force sensing clevis insert. European Patent EP2042429, April 1 (2009)

    Google Scholar 

  59. Pohl, A.: A review of wireless SAW sensors. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 47(2), 317–332 (2000) (Invited paper)

    Article  MathSciNet  Google Scholar 

  60. Washabaugh, P.D., Peters, K.J.: Sensitive structures that retain stiffness by incorporating finite length measurement paths. In: Proc. SPIE N-Amer. Conf. Smart Structures and Materials, Orlando, FL, February 13-18 (1994)

    Google Scholar 

  61. Anis, Y.H., Mills, J.K., Cleghorn, W.L.: Zero-crossing edge detection for visual force measurement in assembly of MEMS devices. In: Proc. SPIE 6109 on MOEMS-MEMS 2006 Micro & Nanofabrication, Session 5, Paper 19, San Jose, CA, January 21 (2006)

    Google Scholar 

  62. Li, C.C.: Interferometric MOEMS sensor. US Patent 7518731, April 14 (2009)

    Google Scholar 

  63. Ştefănescu, D.M.: Methods for increasing the sensitivity of strain gauge force transducers. PhD dissertation (160 pages, 26 tables, 86 figures, 336 references), Universitatea “Politehnica” Bucureşti, Romania, September 10 (1999) (in Romanian)

    Google Scholar 

  64. Stowe, T.D., Yasumura, K., Kenny, T.W., Botkin, D., Wago, K., Rugar, D.: Attonewton force detection using ultrathin silicon cantilevers. Appl. Phys. Lett. 71, 288–290 (1997)

    Article  Google Scholar 

  65. Choi, J.-H., Choi, M.-S., Kim, M.-S., Park, Y.-K.: Magnetic flux quantum as a sub-pico-newton weight. In: Proc. Asia-Pacific Symp. Mass, Force and Torque, APMF 2005, Jeju Island, Korea, August 30 - September 3, pp. 99–104 (2005)

    Google Scholar 

  66. Hakonen, P.: Nanotubes weigh the atom. research*eu results supplement No. 17, p. 43 (September 2009), http://cordis.europa.eu/ictresults/index.cfm?section=news&tpl=article&ID=90708

  67. http://en.wikipedia.org/wiki/Space_Shuttle_Solid_Rocket_Booster (October 19, 2009)

  68. Zhang, S., Chen, W.: Development of the integrated multiple plate-ring type load cell with large capacity. In: Shi, C., Zhang, Y. (eds.) Acta APMF 1996 – Present Situation and Progress of Measurement on Mass and Force, Beijing, China, August 20-22, pp. 151–153 (1996)

    Google Scholar 

  69. Zecchin, P. (Chair.): Digital Load Cells – A Comparative Review of Performance and Application. The Institute of Measurement and Control, London, UK, Document WP0803 (2003)

    Google Scholar 

  70. Varadan, V.K.: Tutorial Course on Smart Sensors and Materials. In: Proc. 11th Conf. Asia-Pacific Nondestructive Testing, Jeju Island, South Korea, November 4 (2003)

    Google Scholar 

  71. Millea, A.: Electrical Measurements. Principles and Methods. Editura Tehnică, Bucureşti, Romania (1980) (in Romanian)

    Google Scholar 

  72. International Vocabulary of Metrology (VIM 3) – Basic and General Concepts and Associated Terms, ISO (ISO/IEC) Guide 99-12:2007, Geneva, Switzerland (2008)

    Google Scholar 

  73. Mamishev, A.V., Sundara-Rajan, K., Yang, F., Du, Y., Zahn, M.: Interdigital sensors and transducers. Proc. IEEE 92(5), 808–845 (2004)

    Article  Google Scholar 

  74. Ştefănescu, D.M.: Strain gauged elastic elements for force and related quantities measurement. In: CD Proc. IMEKO Int’l Conf. Cultivating Metrological Knowledge, Merida, Mexico, November 27-30, Paper 22 (2007)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ştefănescu, D.M. (2011). Electrical Methods of Force Measurement. In: Handbook of Force Transducers. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18296-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18296-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18295-2

  • Online ISBN: 978-3-642-18296-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics