Skip to main content

Acoustic Force Transducers

  • Chapter
Handbook of Force Transducers

Abstract

An acoustic force transducer is a device in which an acoustic signal (sonic, ultrasonic, etc) is used as an intermediate quantity between its input (in this case, force) and output. There is a great variety of acoustic methods for the measurement of force and other related quantities, the primary one being the surface acoustic wave (SAW) method; others will be discussed together with industrial and medical applications. Alex Mamishev, University of Washington at Seattle, associates the acoustic sensing with the electromagnetic one [13.1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mamishev, A.V., Sundara-Rajan, K., Yang, F., Du, Y., Zahn, M.: Interdigital sensors and transducers. Proceedings IEEE 92(5), 808–845 (2004)

    Article  Google Scholar 

  2. Ebbecke, J.: Deterministic single photon source in carbon nanotubes mediated by surface acoustic waves. PhD project, Heriot Watt University, UK, September 30 (2008)

    Google Scholar 

  3. William, C.T., Nguyen, T.H., Roger, T.H.: Laterally driven polysilicon resonant microstructures. Sensors and Actuators A: Physical 20, 25–32 (1989)

    Google Scholar 

  4. Caronti, A., Caliano, G., Savoia, A., Gatta, P., Pappalardo, M.: Microfabricated capacitive ultrasonic transducer for high frequency applications. European Patent EP-1764162, March 21 (2007)

    Google Scholar 

  5. Wu, N.E., Miles, R.N., Aydin, O.A.: A digital feedback damping scheme for a micromachined directional microphone. In: Proc. 2004 American Control Conference, Boston, MA, June 30 – July 2, pp. 3315–3320 (2004)

    Google Scholar 

  6. Varadan, V.K.: Tutorial Course on Smart Sensors and Materials. In: Proc. 11th Conf. Asia-Pacific Nondestructive Testing, Jeju Island, South Korea, November 4 (2003)

    Google Scholar 

  7. Knigge, B., Talke, F.E.: Contact force measurement using acoustic emission analysis and system identification methods. Tribology International 33, 639–646 (2000)

    Article  Google Scholar 

  8. Oishi, R., Nagai, H.: Strain sensors of shape memory alloys using acoustic emissions. Sensors and Actuators A: Physical 122(1), 39–44 (2005)

    Article  Google Scholar 

  9. Azeem, A., Feng, H.-Y., Orban, P.: Processing noisy cutting force data for reliable calibration of a ball-end milling force model. Measurement 38(2), 113–123 (2005)

    Article  Google Scholar 

  10. Lindner, G., Faustmann, H., Koch, T., Krempel, S., Lind, F., Mick, H., Münch, M., Pflaum, K., Rothballer, S., Unterburger, M.: Digital precision measurement of force, pressure and other mechanical quantities with an acoustic waveguide sensor. In: Proc. 13th Int’l. Conf. Sensor 2007, Nuremberg, May 22-24, vol. I, pp. 91–96 (2007)

    Google Scholar 

  11. Ultrasonic bolt clamping force meter. Hagiwara Electric Co. Ltd., Nagoya, Japan (1983)

    Google Scholar 

  12. Ruffa, A.A.: Acoustic bolt removal. Report approved for public release. Department of the Navy, Washington DC, September 11 (1998)

    Google Scholar 

  13. Ide, T., Uchiyama, H., Yoneda, T., Tanaka, H.: Measurement of contact force between pulley sheave and metal pushing V-belt by means of ultrasonic waves. JSAE Review 22, 163–167 (2001)

    Article  Google Scholar 

  14. Prokic, M., Tapson, J., Mortimer, B.J.P.: The ultrasonic hammer transducer. IEEE, Los Alamitos (2001), www.mpi-ultrasonics.com/hammer-transducer.html

    Google Scholar 

  15. Kim, K.-B., Kim, M.S., Park, J.-G., Lee, S.D., Kim, G.S., Jung, H.-M.: Determination of apple firmness by ultrasonic measurement. In: CD Proc. XVIII IMEKO World Congress, Rio de Janeiro, Brazil, September 2006, pp. 17–22, Paper 313 (2006)

    Google Scholar 

  16. Armstrong, S.R., McCullough, J.L., Beattie, D.T.: Measurement of 5-HT4 receptor-mediated esophageal responses by digital sonomicrometry in the anesthetized rat. Journal of Pharmacological and Toxicological Methods 53(3), 198–205 (2006)

    Article  Google Scholar 

  17. Witte, R.S., Dow, D.E., Olafsson, R., Shi, Y., O’Donnell, M.: High resolution ultrasound imaging of skeletal muscle dynamics and effects of fatigue. In: Proc. Joint 50th Anniversary Conf. IEEE Ultrasonics, Ferroelectrics, and Frequency Control, Montréal, Canada, August 24-27, pp. 764–767 (2004)

    Google Scholar 

  18. Lynch, J.E., Hinders, M.K., McCombs, G.B.: Clinical comparison of an ultra-sonographic periodontal probe to manual and controlled-force probing. Measurement 39(5), 429–439 (2006)

    Article  Google Scholar 

  19. Nightingale, K., Scott, M., Nightingale, R., Trahey, G.: Acoustic Radiation Force Impulse imaging: In vivo demonstration of clinical feasibility. Ultrasound in Medicine & Biology 28(2), 227–235 (2002)

    Article  Google Scholar 

  20. Nightingale, K., Palmeri, M., Zhai, L., Frinkley, K., Wang, M., Dahl, J., Pinton, G., Hsu, S., Fahey, B., Dumont, D., Trahey, G.: Clinical applications of acoustic radiation force impulse imaging. In: Proc. 19th Int’l Congress on Acoustics, PACS: 43.80.Qf, Madrid, Spain, September 2-7 (2007)

    Google Scholar 

  21. Lazebnik, R.S.: Tissue strain analytics virtual touch tissue imaging and quantification – ACUSON S2000 ultrasound system. In: SIEMENS Medical Solutions - USA, Inc., Mountain View, CA, PDF created on November 5 (2008)

    Google Scholar 

  22. Melodelima, D., Bamber, J.C., Duck, F.A., Shipley, J.A., Xu, L.: Elastography for breast cancer diagnosis using radiation force: System development and performance evaluation. Ultrasound in Medicine & Biology 32(3), 387–396 (2006)

    Article  Google Scholar 

  23. Palmeri, M.L., Nightingale, K.R.: On the thermal effects associated with radiation force imaging of soft tissue. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 51(5), 551–565 (2004)

    Article  Google Scholar 

  24. Zhang, X., Greenleaf, J.F.: Measurement of wave velocity in arterial walls with ultrasound transducers. Ultrasound Medical Biology 32(11), 1655–1660 (2006)

    Article  Google Scholar 

  25. Rivera Cardona, M.A., Alvarenga, A.V., da Costa-Felix, R.P.B.: Primary level ultrasonic output power measurement at laboratory of ultrasound of INMETRO. In: CD Proc. XVIII IMEKO World Congress on Metrology for a Sustainable Development, Rio de Janeiro, Brazil, September 17–22, Paper 124 (2006)

    Google Scholar 

  26. Kuznetsova, L.A., Coakley, W.T.: Applications of ultrasound streaming and radiation force in biosensors. Journal of Biosensors & Bioelectronics 22(8), 1567–1577 (2007)

    Article  Google Scholar 

  27. Hallez, L., Touyeras, F., Hihn, J.Y., Klima, J.: Energetic balance in an ultrasonic reactor using focused or flat high frequency transducers. Ultrasonics Sono-chemistry 14(6), 739–749 (2007)

    Article  Google Scholar 

  28. Chopra, K.L., Kaur, I.: Thin Film Device Applications. Plenum, New York (1983)

    Google Scholar 

  29. Hunt, A. (Coord.): Guide to the Measurement of Force. The Institute of Measurement and Control, London, (Published 1998) ISBN 0-904457-28-1

    Google Scholar 

  30. Gierut, J., Lohr, R.: Automotive powertrain & chassis torque sensor technology. Honeywell International Inc. (2005)

    Google Scholar 

  31. Magee, S.J., Cook, J.D., Liu, J.Z.: Surface acoustic wave sensor methods and systems. US Patent 7165455 (January 23, 2007)

    Google Scholar 

  32. Fuhr, C.: SAW torque sensors for automotive applications help to improve fuel efficiency. Sensor Exhibiton in Hall 12, Booth No. 337 (Transense), Nuremberg, Germany, May 26-28 (2009)

    Google Scholar 

  33. Low-cost OEM rotary torque transducers. Special issue of IEN – Europe, PCNE 34, p. 32 (April 2004)

    Google Scholar 

  34. Turner, J.D., Austin, L.: Sensors for automotive telematics (review article). Measurement Science and Technology 11, R58–R79 (2000)

    Article  Google Scholar 

  35. SAW Technology: Rayleigh surface acoustic wave delay line, July13 (2009), www.sengenuity.com/tech_raleighSAW.html

  36. Drafts, B.: Acoustic wave technology sensors. Sensors Magazine, October 1 (2000), www.sensorsmag.com/articles/.../main.shtml

  37. Wixforth, A.: Nanoquakes shake up biotechnology. Bio Tech International, pp. 20–22 (April/May 2003)

    Google Scholar 

  38. Soborover, E.I., Zyablov, V.L.: A SAW-based element without sensing layer as a gas and gas mixture sensor. (Russian) Sensors and Systems Journal (2) (February 2005)

    Google Scholar 

  39. Bogoslovsky, S.V.: SAW-based dispersion strain gaging resonator. Sensors and Systems Journal (Contents and abstracts translated from Russian) (7) (July 2007)

    Google Scholar 

  40. Campbell, C.K.: Understanding surface acoustic wave (SAW) devices for mobile and wireless applications and design techniques. Internet posting of “68 Questions and Answers for Year 2008” (2008)

    Google Scholar 

  41. Sachs, T.: Funkabfragbare OFW-Verzögerungsleitung zur Dehnungsmessung. In: 7. Internationale Fachmesse mit Kongress für Sensoren, Meßaufnehmern und Systeme – SENSOR 1995, Nürnberg, Deutschland, May 9-11, pp. 79–84 (1995)

    Google Scholar 

  42. Reindl, L., Mágori, V.: Funksensorik mit passiven Oberflächenwellen Komponenten (OFW). VDI – 515, Reihe 8: Meß-, Steuerungs- und Regeltechnik, pp. 62–79 (1995)

    Google Scholar 

  43. Benes, E., Burger, M.G.W., Schmid, M.: Sensors based on piezoelectric resonators. Sensors and Actuators A: Physical 48, 1–21 (1995)

    Article  Google Scholar 

  44. Nomura, T., Kawasaki, K., Saitoh, A.: Wireless passive strain sensor based on surface acoustic wave devices. Sensors & Transducers Journal 90, 61–71 (2008)

    Google Scholar 

  45. Durdag, K.: Wireless surface acoustic wave sensors. Sensors & Transducers Journal 106(7), 1–5 (2009)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ştefănescu, D.M. (2011). Acoustic Force Transducers. In: Handbook of Force Transducers. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18296-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18296-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18295-2

  • Online ISBN: 978-3-642-18296-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics