Skip to main content

Electron Transport in Single Molecules and Nanostructures

  • Chapter
Microsystems and Nanotechnology
  • 3999 Accesses

Abstract

Electron transport in nanoscale materials has attracted much attention with the fast development of the nanofabrication and scanning probe techniques in the past years. Quantum effects such as electron tunneling and quantum confinement effect have become predominant in nanostructures, leading to a diversity of novel transport phenomena. In particular, single electron tunneling (SET) effect, rectifying effect, negative differential resistance (NDR) effect, Kondo effect, and some novel mechanisms responsible for these effects were revealed in the electron transport properties of single atoms, molecules, and nanoparticles. These effects and mechanisms are found to result from the discrete energy levels and localized molecular orbitals in the nanostructures. Recent developments of the measurement techniques and progresses of the studies on electron transport in single molecules and related nanostructures are reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Binnig G., H. Rohrer, Ch. Gerber, and E. Weibel, (1982), Surface Studies by Scanning Tunneling Microscopy, Phys. Rev. Lett., 49: 57–61

    Article  Google Scholar 

  2. Binnig G., H. Rohrer, Ch. Gerber, and E. Weibel, (1982), Tunneling through a controllable vacuum gap, Appl. Phys. Lett., 40: 178–180

    Article  CAS  Google Scholar 

  3. Park H., A. K. L. Lim, A. P. Alivisatos, J. W. Park, and P. L. McEuen, (1999), Fabrication of metallic electrodes with nanometer separation by electromigration, Appl. Phys. Lett., 75: 301–303

    Article  CAS  Google Scholar 

  4. Van Ruitenbeek J. M., A. Alvarez, I. Piñeyro, C., Grahmann P. Joyez, M. H. Devoret, D. Esteve, and C. Urbina, (1995), Adjustable nanofabricated atomic size contacts, Rev. Sci. Instrum., 67: 108–111

    Article  Google Scholar 

  5. Landauer R., (1957), Spatial variation of currents and fields due to localized scatterers in metallic conduction, IBM J. Res. Dev., 1: 223–231

    Article  Google Scholar 

  6. Van Wees B. J., H. Van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, and D. Van der Marel, (1988), Quantized conductance of point contacts in a two-dimensional electron gas, Phys. Rev. Lett., 60: 848–850

    Article  Google Scholar 

  7. Wharam D. A., T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, (1988), One-dimensional transport and the quantization of the ballistic resistance, J. Phys., C 21: L209–L214

    Google Scholar 

  8. Pascual J. I., J. Mendéz, J. Gomez-Herreró, A. M. Baró, N. García, V. T. Binh, (1993), Quantum contact in gold nanostructures by scanning tunneling microscopy, Phys. Rev. Lett., 71: 1852–1855

    Article  CAS  Google Scholar 

  9. Kröger J., H. Jensen, R. Berndt, (2007), Conductance of tip—surface and tip—atom junctions on Au(111) explored by a scanning tunneling microscope, New J. Phys., 9:153:1–9

    Google Scholar 

  10. Limot L., J. Kröger, R. Berndt, A. Garcia-Lekue, and W. A. Hofer, (2005), Atom Transfer and Single-Adatom Contacts, Phys. Rev. Lett., 94:126102-1–126102-4

    Google Scholar 

  11. Cuevas J. C., A. Levy Yeyati, A. Martín-Rodero, G. Rubio Bollinger, C. Untiedt, and N. Agraït, (1998), Evolution of Conducting Channels in Metallic Atomic Contacts under Elastic Deformation, Phys. Rev. Lett., 81: 2990–2993

    Article  CAS  Google Scholar 

  12. Reed M. A., C. Zhou, C. J. Muller, T. P. Burgin, J. M. Tour, (1997), Conductance of a molecular junction, Science, 278: 252–254

    Article  CAS  Google Scholar 

  13. Cui X. D., A. Primak, X. Zarate, J. Tomfohr, O. F. Sankey, A. L. Moore, T. A. Moore, D. Gust, G. Harris, S. M. Lindsay, (2001), Reproducible Measurement of Single-Molecule Conductivity. Science, 294: 571–574

    Article  CAS  Google Scholar 

  14. Xu B. and N. J. Tao, (2003), Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions, Science, 301: 1221–1223

    Article  CAS  Google Scholar 

  15. Tao N. J., (2006), Electron transport in molecular junctions, Nature Nanotechnology, 1: 173–181

    Article  CAS  Google Scholar 

  16. Smit R. H. M., Y. Noat, C. Untiedt, N. D. Lang, M. C. van Hemert, and J. M. van Ruitenbeek, (2002), Measurement of the conductance of a hydrogen molecule, Nature, 419: 906–909

    Article  CAS  Google Scholar 

  17. Bardeen J., (1961) Tunneling from a Many-Particle Point of View, Phys. Rev. Lett., 6: 57–59

    Article  CAS  Google Scholar 

  18. Chen C. J., (1993), Introduction to Scanning Tunneling Microscopy, Oxford University Press

    Google Scholar 

  19. Tersoff J. and D. R. Hamann, (1983), Theory and Application for the Scanning Tunneling Microscope, Phys. Rev. Lett., 50: 1998–2001

    Article  CAS  Google Scholar 

  20. Tersoff J. and D. R. Hamann, (1985), Theory of the scanning tunneling microscope, Phys. Rev., B 31: 805–813

    Article  CAS  Google Scholar 

  21. Hou J. G., J. L. Yang, H. Q. Wang, Q. X. Li, C. G. Zeng, H. Lin, and B. Wang, (1999), Identifying Molecular Orientation of Individual C 60 on a Si(111)-(7×7) Surface, Phys. Rev. Lett., 83: 3001–3004

    Article  CAS  Google Scholar 

  22. Wang H. Q., C. G. Zeng, Q. X. Li, B. Wang, J. L. Yang, J. G. Hou, Q. S. Zhu, (1999), Scanning tunneling spectroscopy of individual C60 molecules adsorbed on Si(111)-7×7 surface, Surf. Sci., 442: L1024–L1028

    Article  CAS  Google Scholar 

  23. Grabert H. and M. H. Devoret, (1992) Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures (NATO Science Series: B), Plenum, New York

    Google Scholar 

  24. Brus L. E. (1984), Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys., 80: 4403–4407

    Article  CAS  Google Scholar 

  25. Banin U., Y. W. Cao, D. Katz, and O. Millo, (1999), Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots, Nature, 400: 542–544

    Article  CAS  Google Scholar 

  26. Wang B., H. Q. Wang, H. X. Li, C. G. Zeng, J. G. Hou, and X. D. Xiao, (2000), Tunable single-electron tunneling behavior of ligand-stabilized gold particles on self-assembled monolayers, Phys. Rev., B 63: 035403-1–035403-7

    Google Scholar 

  27. Wang B., K. D. Wang, W. Lu, J. L. Yang, J. G. Hou, (2004), Size-dependent tunneling differential conductance spectra of crystalline Pd nanoparticles, Phys. Rev., B 70: 205411-1–205411-6

    Google Scholar 

  28. Hou J. G., B. Wang, J. L. Yang, K. D. Wang, W. Lu, Z. Y. Li, H. Q. Wang, D. M. Chen, and Q. S. Zhu, (2003), Disorder and Suppression of Quantum Confinement Effects in Pd Nanoparticles, Phys. Rev. Lett., 90: 246803-1–246803-4

    Google Scholar 

  29. Büttiker M., (1993), Capacitance, admittance, and rectification properties of small conductors, J. Phys. Condens. Matter, 5: 9361–9378

    Article  Google Scholar 

  30. Hou J. G., B. Wang, J. L. Yang, X. R. Wang, H. Q. Wang, Q. S. Zhu, and X. D. Xiao (2001), Nonclassical Behavior in the Capacitance of a Nanojunction, Phys. Rev. Lett., 86: 5321–5324

    Article  CAS  Google Scholar 

  31. Wang B., X. D. Xiao, X. X. Huang, P. Sheng, and J. G. Hou, (2000), Single-electron tunneling study of two-dimensional gold clusters, Appl. Phys. Lett., 77: 1179–1181

    Article  CAS  Google Scholar 

  32. Park H., J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos, and P. L. McEuen, (2000), Nanomechanical oscillations in a single-C60 transistor, Nature, 407: 57–60

    Article  Google Scholar 

  33. Li B., C. G. Zeng, J. Zhao, J. L. Yang, J. G. Hou, and Q. S. Zhu, (2006), Single-electron tunneling spectroscopy of single C60 in double-barrier tunnel junction, J. Chem. Phys., 124: 064709-1–064709-11

    Google Scholar 

  34. Aviram A., M. A. Ratner, (1974), Molecular Rectifiers, Chem. Phys. Lett., 29: 277–283

    Article  CAS  Google Scholar 

  35. Metzger R. M., B. Chen, U. Höpfner, M. V. Lakshmikantham, D. Vuillaume, T. Kawai, X. Wu, H. Tachibana, T. V. Hughes, H. Sakurai, et al., (1997), Unimolecular Electrical Rectification in Hexadecylquinolinium Tricyanoquinodimethanide, J. Am. Chem. Soc., 119:10455–10466

    Article  CAS  Google Scholar 

  36. Wang B., Y. S. Zhou, X. L. Ding, K. D. Wang, X. P. Wang, J. L. Yang, and J. G. Hou, (2006), Conduction Mechanism of Aviram-Ratner Rectifiers with Single Pyridine-σ-C60 Oligomers, J. Phys. Chem., B 110:24505–24512

    CAS  Google Scholar 

  37. Zhao J., C. Zeng, X. Cheng, K. Wang, G. Wang, J. Yang, J. G. Hou, and Q. Zhu, (2005), Single C59N molecule as a Rectifier, Phys. Rev. Lett., 95: 045502-1–045502-4

    Google Scholar 

  38. Tsu R. and L. Esaki, (1973), Tunneling in a finite superlattice, Appl. Phys. Lett., 22: 562–564

    Article  CAS  Google Scholar 

  39. Soller T. C. L. G., W. D. Goodhue, P. E. Tannenwald, C. D. Parker, and D. D. Peck, (1983), Resonant tunneling through quantum wells at frequencies up to 2.5 THz, Appl. Phys. Lett., 43: 588–590

    Article  Google Scholar 

  40. Chen J., M. A. Reed, A. M. Rawlett, J. M. Tour, (1999), Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device, Science, 286: 1550–1552

    Article  CAS  Google Scholar 

  41. Lang N. D., (1986), Spectroscopy of single atoms in the scanning tunneling microscope, Phys. Rev., B 34: 5947–5976

    Article  Google Scholar 

  42. Lang N. D., (1997), Negative differential resistance at atomic contacts, Phys. Rev., B 55: 9364–9366

    Article  CAS  Google Scholar 

  43. Zeng C. G., H. Q. Wang, B. Wang, J. l. Yang, and J. G. Hou, (2000), Negative differential-resistance device involving two C60 molecules, Appl. Phys. Lett., 77: 3595–3597

    Article  CAS  Google Scholar 

  44. Wang B., K. D. Wang, W. Lu, H. Q. Wang, Z. Y. Li, J. L. Yang, and J. G. Hou, (2003), Effects of discrete energy levels on single-electron tunneling in coupled metal particles, Appl. Phys. Lett., 82: 3767–3769

    Article  CAS  Google Scholar 

  45. Chen L., Z. P. Hu, A. D. Zhao, B. Wang, Y. Luo, J. L. Yang, and J. G. Hou (2007), Mechanism for negative differential resistance in molecular electronic devices: local orbital symmetry matching, Phys. Rev. Lett., 99: 146803-1–146803-4

    Google Scholar 

  46. Hewson A. C., (1993), The Kondo Problem to Heavy Fermions, Cambridge Univ. Press, Cambridge

    Book  Google Scholar 

  47. Kondo J., (1964), Resistance minimum in dilute magnetic alloys, Prog. Theor. Phys., 32: 37–49

    Article  CAS  Google Scholar 

  48. Glazman L. I. and M. E. Raikh, (1988), Resonant Kondo transparency of a barrier with quasilocal impurity states, JETP Lett., 47: 452–455

    Google Scholar 

  49. Ng T. K. and P. A. Lee, (1988), On-site Coulomb repulsion and resonant tunneling, Phys. Rev. Lett., 61: 1768–1771

    Article  Google Scholar 

  50. Goldhaber-Gordon D., H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, and M. A. Kastner, (1998), Kondo effect in a single-electron transistor, Nature, 391: 156–159

    Article  CAS  Google Scholar 

  51. Li J., W. D. Schneider, R. Berndt, and B. Delley, (1998), Kondo Scattering Observed at a Single Magnetic Impurity, Phys. Rev. Lett., 80: 2893–2896

    Article  CAS  Google Scholar 

  52. Madhavan V., W. Chen, T. Jamneala, M. F. Crommie, and N. S. Wingreen, (1998), Tunneling into a Single Magnetic Atom: Spectroscopic Evidence of the Kondo Resonance, Science, 280: 567–569

    Article  CAS  Google Scholar 

  53. Jamneala T., V. Madhavan, W. Chen, and M. F. Crommie, (2000), Scanning tunneling spectroscopy of transition-metal impurities at the surface of gold, Phys. Rev., B 61: 9990–9993

    Article  CAS  Google Scholar 

  54. Knorr N., M. A. Schneider, L. Diekhöner, P. Wahl, and K. Kern, (2002), Kondo Effect of Single Co Adatoms on Cu Surfaces, Phys. Rev. Lett., 88: 096804-1–096804-4

    Article  Google Scholar 

  55. Park J., A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, J. P. Sethna, H. D. Abruña, P. L. McEuen, and D. C. Ralph, (2002), Coulomb blockade and the Kondo effect in single-atom transistors, Nature, 417: 722–725

    Article  CAS  Google Scholar 

  56. Liang Wenjie, M. P. Shores, M. Bockrath, J. R. Long, and H. K. Park, (2002), Kondo resonance in a single-molecule transistor, Nature, 417: 725–729

    Article  Google Scholar 

  57. Zhao A. D., Q. X. Li, L. Chen, H. J. Xiang, W. H. Wang, S. Pan, B. Wang, X. D. Xiao, J. L. Yang, J. G. Hou, et al., (2005), Controlling the Kondo Effect of an Adsorbed Magnetic Ion Through Its Chemical Bonding, Science, 309:1542–1544

    Article  CAS  Google Scholar 

  58. Jaklevic R. C. and J. Lambe, (1966), Molecular Vibration Spectra by Electron Tunneling, Phys. Rev. Lett., 17: 1139–1140

    Article  CAS  Google Scholar 

  59. Lambe J. and R. C. Jaklevic, (1968), Molecular Vibration Spectra by Inelastic Electron Tunneling, Phys. Rev., 165: 821–832

    Article  CAS  Google Scholar 

  60. Binnig G., N. Garcia, and H. Rohrer (1985), Conductivity sensitivity of inelastic scanning tunneling microscopy, Phys. Rev., B 32: 1336–1338

    Article  CAS  Google Scholar 

  61. Stipe B. C., M. A. Rezaei, and W. Ho, (1998), Single-Molecule Vibrational Spectroscopy and Microscopy, Science, 280: 1732–1735

    Article  CAS  Google Scholar 

  62. Heinrich A. J., J. A. Gupta, C. P. Lutz, D. M. Eigler, (2004), Single-Atom Spin-Flip Spectroscopy, Science, 306: 466–469

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhao, A., Zhang, H., Hou, J.G. (2012). Electron Transport in Single Molecules and Nanostructures. In: Zhou, Z., Wang, Z., Lin, L. (eds) Microsystems and Nanotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18293-8_5

Download citation

Publish with us

Policies and ethics