Skip to main content

Abstract

The modern Amphibia are quite different from their remote Paleozoic ancestors. The modern forms are generally considered to be a single monophyletic group (Szarski 1962; Parsons and Williams 1963; Thomson 1967; Schmalhausen 1968; Carroll and Holmes 1980; Gardiner 1983; Carroll 1988; but see Jarvik 1960, 1980). Jarvik (1960, 1980) is an outspoken proponent of the polyphyletic origin of modern amphibians from at least two, and probably even three, different crossopterygian groups: urodeles are hypothesised to be derived from porolepiform fishes, while anurans and amniotes are thought to be derived from populations of osteolepiform fishes. Embryological data also suggest a possible polyphyletic origin of recent amphibians (Nieuwkoop and Sutasurya 1976). Gymnophionans are thought to be derived from some other, unknown group. When the land vertebrates arose, whether from the crossopterygian rhipidistians (e.g. Schaeffer 1965; Schmalhausen 1968; Edwards 1977, 1989; Szarski 1977; Holmes 1985; Schultze 1987) or from the lungfishes (see Rosen et al. 1981; Bemis et al. 1987), the lateral paired fins were converted into organs of locomotion on the ground (Gregory and Raven 1942).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler K (1970) The role of extraoptic photoreceptors in amphibian rhythms and orientation: a review. J Herpetol 4:99–112

    Google Scholar 

  • Adler K (1976) Extraocular photoreception in amphibians. Photochem Photobiol 23:291–297

    Google Scholar 

  • Anderson JD (1968) A comparison of the food habits of Ambystoma macrodactylum sigillatum, Ambystoma macrodactylum croceum and Ambystoma tigrinum californiense. Herpetologica 24:273–284

    Google Scholar 

  • Ariëns Kappers CU, Huber CG, Crosby EC (1936) The comparative anatomy of the nervous system of vertebrates, including man, 2 vols. MacMillan, New York (reprint in 3 vols, 1967, Hafner, New York)

    Google Scholar 

  • Ariëns Kappers J (1965) Survey of the innervation of the epiphysis cerebri and the accessory pineal organs of vertebrates. Prog Brain Res 10:87–153

    Google Scholar 

  • Armstrong JB, Malacinski GM (eds) (1989) Developmental biology of the axolotl. Oxford University Press, New York

    Google Scholar 

  • Arnold W (1968) Ueber das diencephal-telencephale neurosekretorische System beim Salamander (Salamandra salamandra and S. tigrinum). Z Zeilforsch 89:371–409

    CAS  Google Scholar 

  • Arnold W (1970) Ueber eigentümliche neuronale Zellelemente im Ependym des Zentralkanals von Salamandra maculosa. Z Zellforsch 105:176–187

    CAS  PubMed  Google Scholar 

  • Artero C, Fasolo A, Franzoni MF (1994) Multiple sources of the pituitary pars intermedia innervation in amphibians: a DiI retrograde tract-tracing study. Neurosci Lett 169:163–166

    CAS  PubMed  Google Scholar 

  • Baird IL (1974) Anatomical features of the inner ear of submammalian vertebrates. In: Keidel W, Neff W (eds) Handbook of sensory physiology, vol V. Springer-Verlag, Berlin Heidelberg New York, pp 159–212

    Google Scholar 

  • Barnard JW (1936) A phylogenetic study of the visceral afferent areas associated with the facial, glossopharyngeal, and vagus nerves, and their fiber connections. The efferent facial nucleus. J Comp Neurol 65:503–602

    Google Scholar 

  • Bartels M, Münz H, Claas B (1990) Representation of lateral line and electrosensory systems in the midbrain of the axolotl, Ambystoma mexicanum. JComp Physiol A 167:347–356

    Google Scholar 

  • Beccari N (1907) Richerche sulle cellule e sulle fibre di Mauthner e sulle loro connessioni in pesce e anfibi. Arch Ital Anat Embriol 6:660–708

    Google Scholar 

  • Becker CG, Becker T, Roth G (1993) Distribution of NCAM-180 and polysialic acid in the developing tectum mesencephali of the frog Discoglossus pictus and the salamander Pleurodeles waltl. Cell Tiss Res 272:289–301

    CAS  Google Scholar 

  • Becker T, Becker CG, Niemann U, Naujoks-Manteufel C, Gerardy-Schahn R, Roth G (1993) Amphibian-specific regulation of polysialic acid and the neural cell adhesion molecule in development and regeneration of the retinotectal system of the salamander Pleurodeles waltl. J Comp Neurol 336:532–544

    CAS  PubMed  Google Scholar 

  • Bekoff A (1981) Embryonic development of the neural circuitry underlying motor coordination. In: Cowan WM (ed) Topics in developmental neurobiology: essays in honor of Viktor Hamburger. Oxford University Press, New York, pp 134–170

    Google Scholar 

  • Bekoff A (1985) Development of locomotion in vertebrates: a comparative perspective. In: Gollin ES (ed) The comparative development of adaptive skills: evolutionary implications. Lawrence Erlbaum Ass, Hillsdale, NJ, pp 57–94

    Google Scholar 

  • Bemis WE, Burggren WW, Kemp NE, eds (1987) The biology and evolution of lungfishes. J Morphol, Suppl 1:1–383

    Google Scholar 

  • Bennett MR, McGrath PA (1980) Segmental innervation of rotated and supernumerary axolotl hindlimbs. J Exp Zool 214:1–12

    CAS  PubMed  Google Scholar 

  • Bergquist H (1932) Zur Morphologie des Zwischenhirnes bei niederen Wirbeltieren. Acta Zool (Stockh) 13:57–103

    Google Scholar 

  • Bergquist H (1954) Ontogenesis of diencephalic nuclei in vertebrates. Lunds Univ Arsskr 50:1–33

    Google Scholar 

  • Bertmar G (1981) Evolution of vomeronasal organs in vertebrates. Evolution 35:359–366

    Google Scholar 

  • Bewick GS, Rowlerson A, Tonge DA, Holder N (1991) Organization of motor units in the axolotl: a continuously growing animal. J Comp Neurol 303:551–562

    CAS  PubMed  Google Scholar 

  • Billo R, Wake MH (1987) Tentacle development in Dermophis mexicanus (Amphibia, Gymnophiona) with an hypothesis of tentacle origin. J Morphol 192:101–111

    Google Scholar 

  • Blight AR (1976) Undulatory swimming with and without waves of contraction. Nature 264:352–354

    CAS  PubMed  Google Scholar 

  • Blight AR (1977) The muscular control of vertebrate swimming movements. Biol Rev 52:181–218

    Google Scholar 

  • Blight AR (1978) Golgi staining of “primary” and “secondary” motoneurons in the developing spinal cord of an amphibian. J Comp Neurol 180:679–690

    CAS  PubMed  Google Scholar 

  • Bodian D (1936) A new method for staining nerve fibers and nerve endings in mounted paraffin sections. Anat Rec 65:89–97

    Google Scholar 

  • Bordzilovskaya NP, Dettlaff TA (1975) Axolotl: Ambystoma mexicanum (Cope). In: Dettlaff TA, Geycinovich AE, Brodsky VY (eds) Objects of the biology of development. Series on the problems of the biology of growth. Academy of Sciences, USSR, Moscow, pp 370–389

    Google Scholar 

  • Bordzilovskaya NP, Dettlaff TA (1979) Table of stages of the normal development of axolotl embryos and the prognostication of timing of successive developmental stages at various temperatures. Axolotl Newslett 7:2–22

    Google Scholar 

  • Bordzilovskaya NP, Dettlaff TA, Duhon ST, Malacinski GM (1989) Developmental-stage series of axolotl embryos. In: Armstrong JB, Malacinski GM (eds) Developmental biology of the axolotl. Oxford University Press, New York, pp 201–219

    Google Scholar 

  • Braitenberg V, Kemali M (1970) Exceptions to bilateral symmetry in the epithalamus of lower vertebrates. J Comp Neurol 138:137–146

    CAS  PubMed  Google Scholar 

  • Bramble DM, Wake DB (1985) Feeding mechanisms of lower tetrapods. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional vertebrate morphology. Harvard University Press, Cambridge, MA, pp 230–261

    Google Scholar 

  • Brändle K, Székely G (1973) The control of alternating coordination of limb pairs in the newt (Triturus vulgaris). Brain Behav Evol 8:366–385

    PubMed  Google Scholar 

  • Brandon RA (1989) Natural history of the axolotl and its relationship to other ambystomatid salamanders. In: Armstrong JB, Malacinski GM (eds) Developmental biology of the axolotl. Oxford University Press, New York, pp 13–21

    Google Scholar 

  • Brauth SE (1990) Histochemical strategies in the study of neural evolution. Brain Behav Evol 36:100–115

    CAS  PubMed  Google Scholar 

  • Broman I (1920) Das Organon vomeronasale Jacobsoni — ein Wassergeruchsorgan!. Anat Hefte 58:143–191

    Google Scholar 

  • Bullock TH, Heiligenberg W, eds (1986) Electroreception. Wiley, New York

    Google Scholar 

  • Bullock TH, Bodznick DA, Northcutt RG (1983) The phylogenetic distribution of electroreception: evidence for convergent evolution of a primitive vertebrate sense modality. Brain Res Rev 6:25–46

    Google Scholar 

  • Burckhardt R (1889) Histologische Untersuchungen am Rückenmark der Tritonen. Arch Mikr Anat 34:131–156

    Google Scholar 

  • Butler EG, Ward MB (1965) Reconstitution of the spinal cord following ablation in urodele larvae. J Exp Zool 160:47–66

    CAS  PubMed  Google Scholar 

  • Butler EG, Ward MB (1967) Reconstitution of the spinal cord after ablation in adult Triturus. Dev Biol 15:464–486

    CAS  PubMed  Google Scholar 

  • Cajal S, Ramón Y (1909) Histologie du Système Nerveux de l’Homme et des Vertébrés. Tome I. Maloine, Paris

    Google Scholar 

  • Caldwell JH, Berman N (1977) The central projections of the retina in Necturus maculosus. J Comp Neurol 171:455–464

    CAS  PubMed  Google Scholar 

  • Carroll RL (1988) Vertebrate paleontology and evolution. Freeman, New York

    Google Scholar 

  • Carroll RL, Holmes R (1980) The skull and jaw musculature as guides to the ancestry of salamanders. Zool J Linn Soc 68:1–40

    Google Scholar 

  • Chanoine C, d’Albis A, Lenfant-Guyot M, Janmont C, Gallien CL (1987) Regulation by thyroid hormones of terminal differentiation in skeletal dorsal muscle. Dev Biol 123:33–42

    CAS  PubMed  Google Scholar 

  • Clairambault P, Timmel JF (1990) Developmental organization of the amphibian pallium. Exp Brain Res Series 19:29–41

    Google Scholar 

  • Clairambault P, Cordier-Picouet M-J, Pairault C (1980) Premieres données sur les projections visuelles d’un Amphibien Apode (Typhlonectes compressicauda). C R Acad Sci Ser D 291:283–286

    Google Scholar 

  • Clairambault P, Fasolo A, Pairault C, Levrat-Calviac V (1986a) Pallial connections in Urodela. Neurosci Lett, Suppl 26:S 447

    Google Scholar 

  • Clairambault P, Pairault C, Fasolo A (1986b) Habenular connections in the brain of the newt, Triturus cristatus carnifex Laurenti. J Hirnforsch 27:111–119

    CAS  PubMed  Google Scholar 

  • Clairambault P, Christophe N, Pairault C, Herbin M, Ward R, Repérant J (1994) Organization of the serotoninergic system in the brain of two amphibian species, Ambystoma mexicanum (Urodela) and Typhlonectes compressicauda (Gymnophiona). Anat Embryol 190:87–99

    CAS  PubMed  Google Scholar 

  • Clarke JDW, Alexander R, Holder N (1988) Regeneration of descending axons in the spinal cord of the axolotl. Neurosci Lett 89:1–6

    CAS  PubMed  Google Scholar 

  • Cleine JH, Slack JMW (1985) Normal fates and states of specification of different regions in the axolotl gastrula. J Embryol Exp Morphol 86:247–269

    CAS  PubMed  Google Scholar 

  • Clemente (1964) Regeneration in the vertebrate central nervous system. Int Rev Neurobiol 6:257–301

    CAS  PubMed  Google Scholar 

  • Coghill GE (1902) The cranial nerves of Amblystoma tigrinum. J Comp Neurol 12:207–289

    Google Scholar 

  • Coghill GE (1913) The primary ventral roots and somatic motor column of Amblystoma. J Comp Neurol 23:121–143

    Google Scholar 

  • Coghill GE (1914) Correlated anatomical and physiological studies of the growth of the nervous system of Amphibia. I. The afferent system of the trunk of Amblystoma. J Comp Neurol 24:161–233

    Google Scholar 

  • Coghill GE (1926) Ibid VII. The growth of the pattern of the association mechanism of the rhombencephalon and spinal cord of Amblystoma punctatum. J Comp Neurol 42:1–16

    Google Scholar 

  • Coghill GE (1929) Anatomy and the problem of behaviour. Cambridge University Press, Cambridge; Hafner, New York (Reprint 1964)

    Google Scholar 

  • Compoint C, Clairambault P (1986) Anatomie et développement du Systeme visuel de Pleurodeles poiretti. J Hirnforsch 27:37–43

    CAS  PubMed  Google Scholar 

  • Coombs S, Görner P, Münz H (eds) (1989) The mechanosensory lateral line: neurobiology and evolution. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Corio M, Doerr-Schott J (1988) The monoaminergic system in the diencephalon of the tadpole, Triturus alpes-tris (Mert). A histofluorescence study. J Hirnforsch 29:377–384

    CAS  PubMed  Google Scholar 

  • Corio M, Thibault J, Peute J (1990) Topographical relationship between catecholamine-and neuropeptide-containing fiber in the median eminence of the newt, Triturus alpestris. An ultrastructural immunocytochemical study. Cell Tiss Res 259:561–566

    CAS  Google Scholar 

  • Corio M, Thibault J, Peute J (1992) Distribution of catecholaminergic and serotonergic systems in forebrain and midbrain of the newt, Triturus alpestris (Urodela). Cell Tiss Res 268:377–387

    CAS  Google Scholar 

  • Cuny R, Malacinski GM (1989) The eyeless (e) gene: Effects on embryonic development. In: Armstrong JB, Malacinski GM (eds) Developmental biology of the axolotl. Oxford University Press, New York, pp 132–142

    Google Scholar 

  • Czéh G, Gogan P (1984a) Sensory afferent projections to the brachial spinal segments of Pleurodeles waltlii. Neurosci Lett, Suppl 18:S 254

    Google Scholar 

  • Czéh G, Gogan P (1984b) The morphology and repartition of hindlimb motoneurones in the spinal cord of Pleurodeles waltlii. Neurosci Lett, Suppl 18:S 268

    Google Scholar 

  • David H, Winkelmann E, Marx I (1963) Elektronmikroskopische Untersuchungen degenerativer und regenerativer Vorgänge am durchtrennten Rückenmark von Amblystoma mexicanum. J Hirnforsch 6:235–243

    CAS  PubMed  Google Scholar 

  • David RS, Jaeger RG (1981) Prey location through chemical cues by a terrestrial salamander. Copeia 2:435–440

    Google Scholar 

  • Davis BM, Duffy MT, Simpson SB Jr (1989) Bulbospinal and intraspinal connections in normal and regenerated salamander spinal cord. Exp Neurol 103:41–51

    CAS  PubMed  Google Scholar 

  • Davis BM, Ayers JL, Koran L, Carlson J, Anderson MC, Simpson SB Jr (1990) Time course of salamander spinal cord regeneration and recovery of swimming: HRP retrograde pathway tracing and kinematic analysis. Exp Neurol 108:198–213

    CAS  PubMed  Google Scholar 

  • Dawley EM (1984) Recognition of individual sex and species odours by salamanders of the Plethodon glutinosus-Plethodon jordani complex. Anim Behav 32:353–361

    Google Scholar 

  • Dawson AB (1936) Changes in the lateral-line organs during the life of the newt, Triturus viridescens. Consideration of the endocrine factors involved in the maintenance of differentation. J Exp Zool 74:221–237

    Google Scholar 

  • de Burlet HM (1928) Ueber die Papilla neglecta. Anat Anz 66:199–209

    Google Scholar 

  • de Burlet HM (1929) Zur vergleichenden Anatomie der Labyrinthinnervation. J Comp Neurol 47:155–169

    Google Scholar 

  • de Burlet HM (1934) Vergleichende Anatomie des statoakustischen Organs. In: Bolk L, Göppert E, Kallius E, Lubosch W (eds) Handbuch der vergleichenden Anatomie der Wirbeltiere, vol 2. Urban and Schwarzenberg, Berlin, pp 1293–1444

    Google Scholar 

  • Delay RJ, Roper SD (1988) Ultrastructure of taste cells and synapses in the mudpuppy Necturus maculosus. J Comp Neurol 277:268–280

    CAS  PubMed  Google Scholar 

  • Demski LS, Northcutt RG (1983) The terminal nerve: a new chemosensory system in vertebrates?. Science 220:435–437

    CAS  PubMed  Google Scholar 

  • Dennis MJ (1975) Physiological properties of junctions between nerve and muscle developing during salamander limb regeneration. J Physiol (Lond) 244:683–702

    CAS  Google Scholar 

  • Dent JN (1942) The embryonic development of Plethodon cinereus as correlated with the differentiation and functioning of the thyroid gland. J Morphol 71:577–601

    Google Scholar 

  • Detwiler SR (1925) Coordinated movements in supernumerary transplanted limbs. J Comp Neurol 38:461–490

    Google Scholar 

  • Detwiler SR (1927) The transplantation of the medulla oblongata into the brachial region of the cord in Amblystoma embryos. J Comp Neurol 43:143–158

    Google Scholar 

  • Detwiler SR (1936) Neuroembryology: an experimental study. MacMillan, New York

    Google Scholar 

  • Detwiler SR (1945) The results of unilateral and bilateral extirpation of the forebrain of Amblystoma. J Exp Zool 60:141–171

    Google Scholar 

  • Dicke U (1992) Neuroanatomische Untersuchungen zum Aufbau und zur Entwicklung der cervicospinalen Motornuclei und ihrer Verknüpfung mit den visuellen Zentren bei Salamandern. Thesis, University of Bremen

    Google Scholar 

  • Dicke U, Roth G (1994) Tectal activation of premotor and motor networks during feeding in salamanders. Eur J Morphol 32:106–116

    CAS  PubMed  Google Scholar 

  • Dodd JM, Follett BK, Sharp PJ (1971) Hypothalamic control of pituitary function in submammalian vertebrates. In: Lowenstein O (ed) Advances in comparative physiology and biochemistry, vol IV. Academic, New York, pp 113–223

    Google Scholar 

  • Dubé L, Parent A (1982) The organization of monoamine containing neurons in the brain of the salamander Necturus maculosus. J Comp Neurol 211:21–30

    PubMed  Google Scholar 

  • Dubé L, Clairambault P, Malacarne G (1990) Striatal afferents in the newt Triturus cristatus. Brain Behav Evol 35:212–226

    PubMed  Google Scholar 

  • Duellman WE, Trueb L (1986) Biology of amphibians. McGraw-Hill, New York

    Google Scholar 

  • Drummond CD Jr (1954) The influence of piromen on the regeneration of the spinal cord in adult Triturus viridescens. Thesis, Brown University, Providence, RI

    Google Scholar 

  • Eagleson GW, Harris WA (1990) Mapping of the presumptive brain regions in the neural plate of Xenopus laevis. J Neurobiol 21:427–440

    CAS  PubMed  Google Scholar 

  • Ebbesson SOE (1976) Morphology of the spinal cord. In: Llinás R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 679–706

    Google Scholar 

  • Ebbesson SOE, Jane JA, Schroeder DM (1972) A general overview of major interspecific variations in thalamic organization. Brain Beh Evol 6:92–130

    CAS  Google Scholar 

  • Edinger L (1908) Vorlesungen über den Bau der nervösen Zentralorgane des Menschen und der Tiere, vol 2. Vogel, Leipzig

    Google Scholar 

  • Edwards JL (1977) The evolution of terrestrial locomotion. In: Hecht MK, Goody PC, Hecht BM (eds) Major patterns in vertebrate evolution. Plenum, New York, pp 553–578

    Google Scholar 

  • Edwards JL (1989) Two perspectives in the evolution of the tetrapod limb. Amer Zool 29:235–254

    Google Scholar 

  • Egar M, Singer M (1972) The role of the ependyma in spinal cord regeneration in the urodele, Triturus. Exp Neurol 37:422–430

    CAS  PubMed  Google Scholar 

  • Elbert OE, Ide CF, Duda M, Hunt RK (1983) Spastic mutant axolotl: identification of a phenocopy pathway with implications for the control of axolotl swimming by the vestibulocerebellum. J Comp Neurol 220:97–105

    CAS  PubMed  Google Scholar 

  • Eisthen HL, Sengelaub DR, Schroeder DM, Alberts JR (1994) Anatomy and forebrain projections of the olfactory and vomeronasal organs in axolotls (Ambystoma mexicanum). Brain Behav Evol 44:108–124

    CAS  PubMed  Google Scholar 

  • Escher K (1925) Das Verhalten der Seitenorgane der Wirbeltiere und ihrer Nerven beim Uebergang zum Landleben. Acta Zool (Stockh) 6:307–414

    Google Scholar 

  • Ewert J-P (1968) Der Einfluss vom Zwischenhirndefekten auf die Visuomotorik im Beute-und Fluchtverhalten der Erdkröte (Bufo bufo). Z Vergl Physiol 61:41–70

    Google Scholar 

  • Ewert J-P (1974) The neural basis of visually guided behavior. Sci Am 230:34–42

    CAS  PubMed  Google Scholar 

  • Ewert J-P (1984) Tectal mechanisms that underlie preycatching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum, New York, pp 247–416

    Google Scholar 

  • Ewert J-P (1987) Neuroethology of releasing mechanisms: prey-catching in toads. Behav Brain Sci 10:337–405

    Google Scholar 

  • Faber J (1956) The development and coordination of larval limb movements in Triturus taeniatus and Ambystoma mexicanum. Arch Neérl Zool 11:498–517

    Google Scholar 

  • Farbman AI, Yonkers JD (1971) Fine structure of the taste bud in the mudpuppy. Necturus maculosus. Amer J Anat 131:353–370

    CAS  PubMed  Google Scholar 

  • Fasolo A, Franzoni MF (1971) On the occurrence of monoamine-containing neurons in the hypothalamus of the newt. Atti Accad Sci Torino, I C1 Sci Nat Fis Natur 105:681–684

    Google Scholar 

  • Fasolo A, Franzoni MF (1977) A Golgi study on the hypothalamus of Amphibia. The neuronal typology. Cell Tiss Res 178:341–354

    CAS  Google Scholar 

  • Fasolo A, Franzoni MF, Clairambault P (1984) Immunocytochemical analysis of the habenulo-interpeduncular system in the newt. Neurosci Lett, Suppl 18:S 218

    Google Scholar 

  • Fasolo A, Franzoni MF, Gaudino G, Steinbusch HWM (1986) The organization of serotonin-immunoreactive neuronal systems in the brain of the crested newt, Triturus cristatus carnifex Laur. Cell Tiss Res 243:239–247

    CAS  Google Scholar 

  • Fetcho JR (1986) The organization of the motoneurons innervating the axial musculature of vertebrates. I. Goldfish (Carassius auratus) and mudpuppies (Necturus maculosus). J Comp Neurol 249:521–550

    CAS  PubMed  Google Scholar 

  • Fetcho JR (1987) A review of the organization and evolution of motoneurons innervating the axial musculature of vertebrates. Brain Res Rev 12:243–280

    Google Scholar 

  • Fetcho JR, Reich NT (1992) Axial motor organization in postmetamorphic tiger salamanders (Ambystoma tigrinum): a segregation of epaxial and hypaxial motor pools is not necessarily associated with terrestrial locomotion. Brain Behav Evol 39:219–228

    CAS  PubMed  Google Scholar 

  • Finkenstädt T, Ewert J-P (1983a) Processing of area dimensions of visual key stimuli by tectal neurons in Salamandra salamandra. J Comp Physiol 153:85–98

    Google Scholar 

  • Finkenstädt T, Ewert J-P (1983b) Visual pattern discrimination through interactions of neural networks: a combined electrical brain stimulation, brain lesion, and extracellular recording study in Salamandra salamandra. J Comp Physiol 153:99–110

    Google Scholar 

  • Finkenstädt T, Ewert J-P (1988) Stimulus-specific long-term habituation of visually guided orienting behavior toward prey in toads: A 14C-2DG study. J Comp Physiol A 163:1–11

    PubMed  Google Scholar 

  • Finkenstädt T, Ebbesson SOE, Ewert J-P (1983) Projections to the midbrain tectum in Salamandra salamandra L. Cell Tiss Res 234:39–55

    Google Scholar 

  • Fisher MD, Udin SB (1988) Connections between the nucleus isthmi and the tectum in larval and post-metamorphic axolotls. J Neurobiol 19:111–125

    CAS  PubMed  Google Scholar 

  • Flight WFG (1973) Observations on the pineal ultrastructure of the urodele, Diemictylus viridescens viridescens. Proc Kon Ned Akad Wet Ser C 76:425–438

    Google Scholar 

  • Flight WFG (1975) On the pineal of the urodele Diemictylus viridescens viridescens. Thesis, University of Utrecht

    Google Scholar 

  • Forrester DC (1979) Homing to the nest by female mountain dusky salamanders (Desmognathus ochrophaeus) with comments on the sensory modalities essential to clutch recognition. Herpetologica 35:330–335

    Google Scholar 

  • Fox H (1984) Amphibian morphogenesis. Humana, Clifton, NJ

    Google Scholar 

  • Francis EBT (1934) The anatomy of the salamander. Clarendon, Oxford

    Google Scholar 

  • Franzoni MF, Morino P (1989) The distribution of GABA-like-immunoreactive neurons in the brain of the newt, Triturus cristatus carnifex, and the green frog, Rana esculenta. Cell Tiss Res 255:155–166

    CAS  Google Scholar 

  • Franzoni MF, Thibault J, Fasolo A, Martinoli MG, Scaranari F, Calas A (1986) Organization of tyrosine-hydroxylase immunopositive neurons in the brain of the crested newt, Triturus cristatus carnifex. J Comp Neurol 251:121–134

    CAS  PubMed  Google Scholar 

  • Franzoni MF, Martinoli MG, Thibault J (1987) Tyrosine hydroxylase-immunoreactive neurons in the hypothalamus of the crested newt. An electron microscopic study. Basic Appl Histochem 31:63–72

    CAS  PubMed  Google Scholar 

  • Freeman JM, Davey DF (1986) The precision of pathway selection by developing peripheral axons in the axolotl. J Embryol Exp Morphol 91:117–134

    CAS  PubMed  Google Scholar 

  • Freytag GE (1974) Urodeles and caecilians. In: Freytag GE, Grzimek B, Kuhn O, Thenius E (eds) Grzimek’s animal life encyclopedia, vol 5: Fishes 2/Amphibians. Van Nostrand Reinhold, New York, pp 309–356

    Google Scholar 

  • Frieden E (1981) The dual role of thyroid hormones in vertebrate development and calorigenesis. In: Gilbert LI, Frieden E (eds) Metamorphosis: a problem in developmental biology. Plenum, New York, pp 545–564

    Google Scholar 

  • Fritzsch B (1980) Retinal projections in European Salamandridae. Cell Tiss Res 213:325–341

    CAS  Google Scholar 

  • Fritzsch B (1981) The pattern of lateral line afferents in urodeles. A horseradish peroxidase study. Cell Tiss Res 218:581–594

    CAS  Google Scholar 

  • Fritzsch B (1988) The inner ear projections of larval and adult urodeles. Brain Behav Evol 31:325–348

    CAS  PubMed  Google Scholar 

  • Fritzsch B (1989) Diversity and regression in the amphibian lateral line and electrosensory system. In: Coombs S, Görner P, Münz H (eds). The mechanosensory lateral line: neurobiology and evolution. Springer-Verlag, Berlin Heidelberg New York, pp 99–114

    Google Scholar 

  • Fritzsch B (1990) The evolution of metamorphosis in amphibians. J Neurobiol 21:1011–1021

    CAS  PubMed  Google Scholar 

  • Fritzsch B, Crapon de Caprona D (1984) The origin of centrifugal inner ear fibers of gymnophions (Amphibia). A horseradish peroxidase study. Neurosci Lett 46:131–136

    CAS  PubMed  Google Scholar 

  • Fritzsch B, Himstedt W (1981) Pretectal neurons project to the salamander retina. Neurosci Lett 24:13–17

    CAS  PubMed  Google Scholar 

  • Fritzsch B, Münz H (1986) Electroreception in amphibians. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 483–496

    Google Scholar 

  • Fritzsch B, Sonntag R (1987) The trochlear nerve of amphibians and its relation to proprioceptive fibers: a qualitative and quantitative HRP study. Anat Embryol 177:105–114

    CAS  PubMed  Google Scholar 

  • Fritzsch B, Wahnschaffe U (1983) The electroreceptive ampullary organs of urodeles. Cell Tiss Res 229:483–503

    CAS  Google Scholar 

  • Fritzsch B, Wake MH (1986) A note on the distribution of ampullary organs in Gymnophiona. J Herpetol 20:90–93

    Google Scholar 

  • Fritzsch B, Wake MH (1988) The inner ear of gymnophione amphibians and its nerve supply: a comparative study of regressive events in a complex sensory system (Amphibia, Gymnophiona). Zoomorphol 108:201–207

    Google Scholar 

  • Fritzsch B, Himstedt W, Crapon de Caprona M-D (1985a) Visual projections in larval Ichthyophis kohtaoensis (Amphibia, Gymnophiona). Dev Brain Res 23:201–210

    Google Scholar 

  • Fritzsch B, Wahnschaffe U, Crapon de Caprona M-D, Himstedt W (1985b) Anatomical evidence for electroreception in larval Ichthyophis kohtaoensis. Naturwissenschaften 72:S102

    Google Scholar 

  • Fritzsch B, Will U, Nikundiwe AM (1985c) The area octavolateralis of amphibians: a reinterpretation. Fortschr Zool 30:603–606

    Google Scholar 

  • Fritzsch B, Drews RC, Ruibal R (1987) The retention of the lateral line nucleus in adult anurans. Copeia 1987:127–135

    Google Scholar 

  • Fritzsch B, Wahnschaffe U, Bartsch U (1988) Metamorphic changes in the octavo-lateralis system of amphibians. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The evolution of the amphibian auditory system. Wiley, New York, pp 359–376

    Google Scholar 

  • Frolich LM, Biewener AA (1992) Kinematic and electromyographic analysis of the functional and aquatic locomotion in the salamander Ambystoma tigrinum. J Exp Biol 162:107–130

    Google Scholar 

  • Frost DR (ed) (1985) Amphibian species of the world. A taxonomic and geographic reference. Allen Press and Association of Systematic Collections, Lawrence, Kansas

    Google Scholar 

  • Fujisawa H, Watanabe K, Tani N, Ibata Y (1981) Retinotopic analysis of fiber pathways in amphibians. I. The adult newt Cynops pyrrhogaster. Brain Res 206:9–20

    CAS  PubMed  Google Scholar 

  • Gabe M (1972) Contribution à l’histologie du complexe hypothalamo-hypophysaire d’Ichthyophis glutinosus L. (Batracien apode). Acta Anat 81:253–269

    CAS  PubMed  Google Scholar 

  • Gallien L, Bidaud O (1959) Table chronologique du développement chez Triturus helveticus Razoumowsky. Bull Soc Zool Franc 84:22–32

    Google Scholar 

  • Gallien L, Durocher M (1957) Table chronologique du développement chez Pleurodeles waltlii Michah. Bull Biol Fr Belg 91:97–114

    Google Scholar 

  • Gans C (1975) Tetrapod limblessness: evolution and functional corollaries. Amer Zool 15:455–467

    Google Scholar 

  • Gardiner BG (1983) Gnathostome vertebrae and the classification of the Amphibia. Zool J Linn Soc 79:1–59

    Google Scholar 

  • Gilbert LI, Frieden E (eds) (1981) Amphibian metamorphosis: a problem in developmental biology. Plenum, New York

    Google Scholar 

  • Gimlich RL, Braun J (1985) Improved fluorescent compounds for tracing cell lineage. Dev Biol 109:509–514

    CAS  PubMed  Google Scholar 

  • Glaesner L (1925) Normentafel zur Entwicklungsgeschichte des gemeinen Wassermolchs (Molge vulgaris). In: Keibel F (ed) Normentafeln zur Entwicklungsgeschichte der Wirbeltiere, H. XIV. Fischer, Jena

    Google Scholar 

  • Gómez Segade LA (1979) La celula de Mauthner y el nucleus motorius tegmenti en los salamandridae. Trab Inst Cajal Invest Biol, Madrid 70:195–230

    Google Scholar 

  • Gómez Segade LA (1980) Morphology and evolution of the acoustic-lateral area in the rhombencephalon of Salamandridae. I. Salamandra salamandra. Trab Inst Cajal Invest Biol, Madrid 71:91–118

    Google Scholar 

  • Gómez Segade LA, Carrato Ibáñez A (1981) Morphology and evolution of the acoustic-lateral area in the rhombencephalon of Salamandridae. II. Chioglossa lusitanica. Trab Inst Cajal Invest Biol, Madrid 72:111–119

    Google Scholar 

  • González A, Muñoz M (1987) Some connections of the area octavolateralis of Pleurodeles waltl. A study with horseradish peroxidase under in vitro conditions. Brain Res 423:338–342

    PubMed  Google Scholar 

  • González A, Muñoz M (1988) Central distribution of the efferent cells and the primary afferent fibers of the trigeminal nerve in Pleurodeles waltlii (Amphibia, Urodele). J Comp Neurol 270:517–527

    PubMed  Google Scholar 

  • González A, Smeets WJAJ (1991) Comparative analysis of dopamine and tyrosine hydroxylase immunoreactivities in the brain of two amphibians, the anuran Rana ridibunda and the urodele Pleurodeles waltlii. J Comp Neurol 303:457–477

    PubMed  Google Scholar 

  • González A, Smeets WJAJ (1992) Comparative analysis of the vasotocinergic and mesotocinergic cells and fibers in the brain of two amphibians, the anuran Rana ridibunda and the urodele Pleurodeles waltlii. J Comp Neurol 315:53–73

    PubMed  Google Scholar 

  • González A, Smeets WJAJ (1994a) Catecholamine systems in the CNS of amphibians. In: Smeets WJAJ, Reiner A (eds) Phylogeny and development of catecholamine systems in the CNS of vertebrates. Cambridge University Press, Cambridge, pp 77–102

    Google Scholar 

  • González A, Smeets WJAJ (1994b) Distribution of tyrosine hydroxylase immunoreactivity in the brain of Typhlonectes compressicauda (Amphibia, Gymnophiona): further assessment of primitive and derived traits of amphibian catecholamine systems. J Chem Neuroanat 8:19–32

    PubMed  Google Scholar 

  • González A, Smeets WJAJ (1995) Noradrenergic and adrenergic systems in the brain of the urodele amphibian, Pleurodeles waltlii, as revealed by immunohistochemical methods. Cell Tiss Res 297:619–627

    Google Scholar 

  • González A, Meredith GE, Roberts BL (1993) Choline acetyltransferase immunoreactive neurons innervating labyrinthine and lateral line sense organs in amphibians. J Comp Neurol 332:258–268

    PubMed  Google Scholar 

  • González A, Muñoz M, Muñoz A, Marín O, Smeets WJAJ (1994) On the basal ganglia of amphibians: dopaminergic mesostriatal projections. Eur J Morphol 32:271–274

    PubMed  Google Scholar 

  • González A, Marín O, Smeets WJAJ (1995) Development of catecholamine systems in the central nervous system of the newt Pleurodeles waltlii as revealed by tyrosine hydroxylase immunohistochemistry. J Comp Neurol 360:33–48

    PubMed  Google Scholar 

  • Goodman LA, Model PG (1988) Superinnervation enhances the dendritic branching pattern of the Mauthner cell in the developing axolotl. J Neurosci 8:776–791

    CAS  PubMed  Google Scholar 

  • Göppert E (1929) Untersuchungen zum Lateralissystem der Amphibien. Die Kopfganglien der Urodelen vor und nach der Metamorphose. Gegenbaurs Morphol Jahrb 62:507–542

    Google Scholar 

  • Goss RJ (1969) Principles of regeneration. Academic, New York

    Google Scholar 

  • Graziadei PPC, Monti-Graziadei GA (1976) Olfactory epithelium of Necturus maculosus and Ambystoma tigrinum. Neurocytology 5:187–197

    Google Scholar 

  • Green J (1825) Description of a new species of salamander. J Acad Nat Sci, Philadelphia 5:116–118

    Google Scholar 

  • Gregory WK, Raven HC (1942) Studies on the origin and early evolution of paired fins and limbs. Ann NY Acad Sci 42:273–360

    Google Scholar 

  • Grimm LM (1971) An evaluation of myotypic respecification in axolotls. J Exp Zool 178:479–496

    CAS  PubMed  Google Scholar 

  • Gruberg ER (1972) Optic fiber projections of the tiger salamander Ambystoma tigrinum. J Hirnforsch 14:399–411

    Google Scholar 

  • Gruberg ER, Harris WA (1981) The serotonergic somatosensory projection to the tectum of normal and eyeless salamanders. J Morphol 170:55–69

    Google Scholar 

  • Grüsser O-J, Grüsser-Cornehls U (1976) Neurophysiology of the anuran visual system. In: Llinás R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 297–385

    Google Scholar 

  • Grüsser-Cornehls U (1984) The neurophysiology of the amphibian optic tectum. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum, New York, pp 211–245

    Google Scholar 

  • Grüsser-Cornehls U, Himstedt W (1973) Responses of retinal and tectal neurons of the salamander (Salamandra salamandra L.) to moving visual stimuli. Brain Behav Evol 7:145–168

    PubMed  Google Scholar 

  • Guillery RW, Updyke BV (1976) Retinofugal pathways in normal and albino axolotls. Brain Res 109:235–244

    CAS  PubMed  Google Scholar 

  • Hally MK, Rasch EM, Mainwaring HR, Bruce RC (1986) Cytophotometric evidence of variation in genome size in desmognathine salamanders. Histochemistry 85:185–192

    CAS  PubMed  Google Scholar 

  • Halpern M (1972) Some connections of the telencephalon of the frog Rana pipiens. Brain Behav Evol 6:42–68

    CAS  PubMed  Google Scholar 

  • Hamburger V (1947) A manual of experimental embryology. University of Chicago Press, Chicago

    Google Scholar 

  • Harper CE, Roberts A (1993) Spinal cord neuron classes in embryos of the smooth newt Triturus vulgaris: a horseradish peroxidase and immunocytochemical study. Phil Trans R Soc (Lond) B 340:141–160

    CAS  Google Scholar 

  • Harris WA (1982) The transplantation of eyes to genetically eyeless salamanders: visual projections and somatosensory interactions. J Neurosci 2:339–353

    CAS  PubMed  Google Scholar 

  • Harris WA (1983) The eyeless axolotl: experimental embryogenetics and the development of the nervous system. Trends Neurosci 6:505–510

    Google Scholar 

  • Harris WA (1989) Neurobiology. In: Armstrong JB, Malacinski GM (eds) Developmental biology of the axolotl. Oxford University Press, New York, pp 157–168

    Google Scholar 

  • Harrison RG (1918) Experiments on the development of the fore limb of Amblystoma, a self-differentiating equipotential system. J Exp Zool 25:413–461

    Google Scholar 

  • Harrison RG (1921) On relations of symmetry in transplanted limbs. J Exp Zool 32:1–136

    Google Scholar 

  • Harrison RG (1969) Harrison stages and description of the normal development of the spotted salamander, Amblystoma punctatum (Linn.). In: Wilens S (ed) The organization and development of the embryo. Yale University Press, New Haven, pp 44–66

    Google Scholar 

  • Hassler R (1978) Striatal control of locomotion, intentional actions, and of integrating and perceptive activity. J Neurol Sci 36:187–224

    CAS  PubMed  Google Scholar 

  • Henning J, Himstedt W (1994) The pathway controlling the pupillary light reflex in urodeles. Exp Brain Res 98:412–420

    CAS  PubMed  Google Scholar 

  • Herrick CJ (1899) The cranial and first spinal nerves of Menidia: a contribution upon the nerve components of the bony fishes. J Comp Neurol 9:153–455

    Google Scholar 

  • Herrick CJ (1910) The morphology of the forebrain in Amphibia and Reptilia. J Comp Neurol 20:413–547

    Google Scholar 

  • Herrick CJ (1914) The medulla oblongata of larval Amblystoma. J Comp Neurol 24:343–427

    Google Scholar 

  • Herrick CJ (1917) The internal structure of the midbrain and thalamus of Necturus. J Comp Neurol 28:215–348

    Google Scholar 

  • Herrick CJ (1921) The connections of the vomeronasal nerve, accessory olfactory bulb and amygdala in Amphibia. J Comp Neurol 33:213–280

    Google Scholar 

  • Herrick CJ (1924) The amphibian forebrain. II. The olfactory bulb of Amblystoma. J Comp Neurol 37:273–396

    Google Scholar 

  • Herrick CJ (1927) The amphibian forebrain. IV. The cerebral hemispheres of Amblystoma. J Comp Neurol 43:231–325

    Google Scholar 

  • Herrick CJ (1930) The medulla oblongata of Necturus. J Comp Neurol 50:1–96

    Google Scholar 

  • Herrick CJ (1931) The amphibian forebrain. V. The olfactory bulb of Necturus. J Comp Neurol 53:55–69

    Google Scholar 

  • Herrick CJ (1933) The amphibian forebrain. VI. Necturus. J Comp Neurol 58:1–288

    Google Scholar 

  • Herrick CJ (1935a) The membranous parts of the brain, meninges and their blood vessels in Amblystoma. J Comp Neurol 61:297–346

    Google Scholar 

  • Herrick CJ (1935b) A topographic analysis of the thalamus and midbrain of Amblystoma. J Comp Neurol 62:239–261

    Google Scholar 

  • Herrick CJ (1936) Conduction pathways in the cerebral peduncle of Amblystoma. J Comp Neurol 63:293–352

    Google Scholar 

  • Herrick CJ (1939a) Internal structure of the thalamus and midbrain of early feeding larvae of Amblystoma. J Comp Neurol 70:89–135

    Google Scholar 

  • Herrick CJ (1939b) The cerebrum of Amblystoma tigrinum in midlarval stages. J Comp Neurol 70:249–266

    Google Scholar 

  • Herrick CJ (1939c) Cerebral fiber tracts of Amblystoma tigrinum in midlarval stages. J Comp Neurol 71:511–612

    Google Scholar 

  • Herrick CJ (1942) Optic and postoptic systems in the brain of Amblystoma tigrinum. J Comp Neurol 77:191–353

    Google Scholar 

  • Herrick CJ (1944) The fasciculus solitarius and its connections in amphibians and fishes. J Comp Neurol 81:307–331

    Google Scholar 

  • Herrick CJ (1948) The brain of the tiger salamander Amblystoma tigrinum. University of Chicago Press, Chicago

    Google Scholar 

  • Herrick CJ, Bishop GH (1958) A comparative survey of the spinal lemniscus systems. In: Jasper HH, Proctor CD, Knighton RS, Noshay WC, Costello RT (eds) Reticular formation of the brain. Little Brown, Boston, pp 353–360

    Google Scholar 

  • Herrick CJ, Coghill GE (1915) The development of reflex mechanisms in Amblystoma. J Comp Neurol 25:65–85

    Google Scholar 

  • Hetherington TE (1979) Behavioral and morphological analysis of pineal organ function in the salamander Ensatina eschscholtzii, Thesis, University of California, Berkeley

    Google Scholar 

  • Hetherington TE (1981) Morphology of the pineal organ in the salamander Ensatina eschscholtzi. J Morphol 169:191–206

    Google Scholar 

  • Hetherington TE (1988) Metamorphic changes in the middle ear. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The evolution of the amphibian auditory system. Wiley, New York, pp 339–357

    Google Scholar 

  • Hetherington TE, Lombard RE (1983) Mechanisms of underwater hearing in larval and adult tiger salamanders Ambystoma tigrinum. Comp Biochem Physiol 74A:555–559

    Google Scholar 

  • Hetherington TE, Wake MH (1979) The lateral-line system in larval Ichthyophis (Amphibia: Gymnophiona). Zoomorphology 93:209–225

    Google Scholar 

  • Heusser HR (1974) Frogs and toads. In: Freytag GE, Grzimek B, Kuhn O, Thenius E (eds) Grzimek’s animal life encyclopedia, vol 5: fishes 2/amphibians. Van Nostrand Reinhold, New York, pp 357–383

    Google Scholar 

  • Hibbard E (1965) Orientation and directed growth of Mauthner’s cell axons from duplicated vestibular nerve roots. Exp Neurol 13:289–301

    CAS  PubMed  Google Scholar 

  • Hibbard E, Ornberg RL (1976) Restoration of vision in genetically eyeless axolotls (Ambystoma mexicanum). Exp Neurol 50:113–123

    Google Scholar 

  • Himstedt W (1982) Prey selection in salamanders. In: Ingle D, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, Mass., pp 47–66

    Google Scholar 

  • Himstedt W, Fischerleitner E (1975) Die Antworten von Retinaneuronen auf Farbreize bei Urodelen. Zool Jahrb Physiol 79:128–147

    Google Scholar 

  • Himstedt W, Manteuffel G (1985) Retinal projections in the caecilian Ichthyophis kohtaoensis (Amphibia, Gymnophiona). Cell Tiss Res 239:689–692

    CAS  Google Scholar 

  • Himstedt W, Roth G (1980) Neuronal responses in the tectum opticum of Salamandra to visual prey stimuli. J Comp Physiol 135:251–257

    Google Scholar 

  • Hofmann MH, Meyer DL (1989) Central projection of the nervus terminalis in four species of amphibians. Brain Behav Evol 34:301–307

    CAS  PubMed  Google Scholar 

  • Holder N, Clarke JDW (1988) Is there a correlation between continuous neurogenesis and directed axon regeneration in the vertebrate nervous system?. Trends Neurosci 11:94–99

    CAS  PubMed  Google Scholar 

  • Holder N, Clarke JDW, Stephens N, Wilson SW, Orsi C, Bloomer T, Tonge DA (1991) Continuous growth of the motor system in the axolotl. J Comp Neurol 303:534–550

    CAS  PubMed  Google Scholar 

  • Holmes EB (1985) Are lungfishes the sister group of tetrapods?. Biol J Linn Soc 25:379–397

    Google Scholar 

  • Holmes RL, Ball JN (1974) The pituitary gland. A comparative account. Cambridge University Press, Cambridge

    Google Scholar 

  • Holtfreter J (1938) Differenzierungspotenzen isolierter Teile der urodelen Gastrula. Arch Entw-Mech Organ 138:522–656

    Google Scholar 

  • Holtfreter J (1939) Gewebeaffinität, ein Mittel der embryonalen Formbildung. Arch Exp Zellforsch 23:169–209

    Google Scholar 

  • Holtzer H (1951) Reconstitution of the urodele spinal cord following unilateral ablation. Part I. Chronology of neuron regulation. J Exp Zool 117:523–558

    Google Scholar 

  • Holtzer H (1952) Reconstitution of the urodele spinal cord following unilateral ablation. Part II. Regeneration of the longitudinal tracts and ectopic synaptic unions of the Mauthner’s fibers. J Exp Zool 119:263–302

    Google Scholar 

  • Hughes AFW (1959) Studies in embryonic and larval development in Amphibia. II. The spinal motor root. J Embryol Exp Morphol 7:128–145

    CAS  PubMed  Google Scholar 

  • Hughes AFW (1968) Aspects of neural ontogeny. Logos Academic, New York

    Google Scholar 

  • Humphrey RR (1969) A recently discovered mutant, “eyeless”, in the Mexican axolotl (Ambystoma mexicanum). Anat Rec 163:306

    Google Scholar 

  • Huxley J (1920) Metamorphosis of axolotl caused by thyroid feeding. Nature 104:436

    Google Scholar 

  • Ide CF, Tompkins R (1975) Development of locomotor behavior in wild-type and spastic (sp/sp) axolotls, Ambystoma mexicanum. J Exp Zool 194:467–478

    CAS  PubMed  Google Scholar 

  • Ide CF, Miszkowski C, Kimmel CB, Schabtach E, Tompkins R, Elbert O, Duda M (1977) Analysis of spastic: a neurological mutant of the Mexican axolotl. In: Hall ZW, Fox CF, Kelley R (eds) Cellular neurobiology. Alan R. Liss, New York, pp 267–289

    Google Scholar 

  • Ingham CA, Güldner FH (1980) Constant occurrence of an ipsilateral retinotectal projection in the axolotl (Ambystoma mexicanum) revealed by horseradish peroxidase tracing. Neurosci Lett 17:17–22

    CAS  PubMed  Google Scholar 

  • Jacobson C-O (1959) The localization of the presumptive cerebral regions in neural plate of the axolotl larva. J Embryol Exp Morphol 7:1–21

    CAS  PubMed  Google Scholar 

  • Jacobson C-O (1964) Motor nuclei, cranial nerve roots and fibre pattern in the medulla oblongata after reversal experiments on the neural plate of axolotl larvae. I. Bilateral operations. Zool Bidrag, Uppsala, 36:73–160

    Google Scholar 

  • Jacobson C-O (1976) Motor nuclei, cranial nerve roots and fibre pattern in the medulla oblongata after reversal experiments on the neural plate of axolotl larvae. II. Unilateral operations. Zoon 4:87–100

    Google Scholar 

  • Jacobson M (1991) Developmental neurobiology, 3rd edn. Plenum Press, New York

    Google Scholar 

  • Jaeger RG, Gergits WF (1978) Intra-and interspecific communication in salamanders through chemical signals on the substrate. Anim Behav 27:150–156

    Google Scholar 

  • Jakway JS, Riss W (1972) Retinal projections in the tiger salamander, Ambystoma tigrinum. Brain Beh Evol 5:401–442

    CAS  Google Scholar 

  • Jarvik E (1955) The oldest tetrapods and their forerunners. Sci Monthly 80:141–154

    Google Scholar 

  • Jarvik E (1960) Theories de Involution des Vertébrés. Réconsidérées a la Lumière des Récentes Découvertes sur les Vertébrés Inférieurs. Masson, Paris

    Google Scholar 

  • Jarvik E (1980) Basic structure and evolution of vertebrates, vols 1, 2. Academic, London

    Google Scholar 

  • Johnston JB (1901) Das Gehirn und die Cranialnerven der Anamnier. Ergebn Anat Entw-Gesch 11:973–1112

    Google Scholar 

  • Jørgensen CB (1968) Central nervous control of adenohypophysial functions. In: Barrington EJW, Jørgensen CB (eds) Perspectives in endocrinology. Academic, New York, pp 469–541

    Google Scholar 

  • Jørgensen JM (1989) Evolution of octavolateralis sensory cells. In: Coombs S, Görner P, Münz H (eds) The mechano-sensory lateral line: neurobiology and evolution. Springer-Verlag, Berlin Heidelberg New York, pp 115–145

    Google Scholar 

  • Just JJ, Kraus-Just J, Check DA (1981) Survey of chordate metamorphosis. In: Gilbert LI, Frieden E (eds) Metamorphosis. A problem in developmental biology. Plenum, New York, pp 265–326

    Google Scholar 

  • Källén B (1951) Some remarks on the ontogeny of the telencephalon in some lower vertebrates. Acta Anat 11:537–548

    PubMed  Google Scholar 

  • Katz MJ, Lasek RJ (1979) Substrate pathways which guide growing axons in Xenopus embryos. J Comp Neurol 183:817–832

    CAS  PubMed  Google Scholar 

  • Katz MJ, Lasek RJ (1981) Substrate pathways demonstrated by transplanted Mauthner axons. J Comp Neurol 195:627–641

    CAS  PubMed  Google Scholar 

  • Katz MJ, Lasek RJ, Nauta HJW (1980) Ontogeny of substrate pathways and the origin of the neural circuit pattern. Neuroscience 5:821–833

    CAS  PubMed  Google Scholar 

  • Kauer JS (1981) Olfactory receptor cell staining using horseradish peroxidase. Anat Rec 200:331–336

    CAS  PubMed  Google Scholar 

  • Kauer JS (1991) Contributions of topography and parallel processing to odor coding in the vertebrate olfactory pathway. Trends Neurosci 14:79–85

    CAS  PubMed  Google Scholar 

  • Kauer JS, Moulton DG (1974) Responses of olfactory bulb neurones to odour stimulation of small nasal areas in the salamander. J Physiol (Lond) 243:717–737

    CAS  Google Scholar 

  • Keller RE (1976) Vital dye mapping of the gastrula and neurula of Xenopus laevis. II. Prospective areas and morphogenetic movements of the deep layer. Dev Biol 51:118–137

    CAS  PubMed  Google Scholar 

  • Kelly DE (1965) Ultrastructure and development of amphibian pineal organs. Prog Brain Res 10:270–287

    CAS  PubMed  Google Scholar 

  • Kicliter E (1979) Some telencephalic connections in the frog, Rana pipiens. J Comp Neurol 185:75–86

    CAS  PubMed  Google Scholar 

  • Kicliter E, Ebbesson SOE (1976) Organization of the “nonolfactory” telencephalon. In: Llinás R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 954–972

    Google Scholar 

  • Kicliter E, Northcutt RG (1975) Ascending afferents to the telencephalon of ranid frogs: an anterograde degeneration study. J Comp Neurol 161:239–254

    CAS  PubMed  Google Scholar 

  • Kimmel CB, Schabtach E (1974) Patterning in synaptic knobs which connect with Mauthner’s cell (Ambystoma mexicanum). J Comp Neurol 156:49–80

    CAS  PubMed  Google Scholar 

  • Kingsbury BF (1895) On the brain of Necturus maculosus. J Comp Neurol 5:139–205

    Google Scholar 

  • Kinnamon SC (1988) Taste transduction: a diversity of mechanisms. Trends Neurosci 11:491–496

    CAS  PubMed  Google Scholar 

  • Kinnamon SC, Roper SD (1987) Passive and active membrane properties of mudpuppy taste receptor cells. J Physiol (Lond) 383:601–614

    CAS  Google Scholar 

  • Kinnamon SC, Roper SD (1988) Membrane properties of isolated mudpuppy taste cells. J Gen Physiol 91:351–371

    CAS  PubMed  Google Scholar 

  • Kirsche W (1956) Experimentelle Untersuchungen über die Regeneration des durchtrennten Rückenmarkes von Amblystoma mexicanum. Z Mikrosk-Anat Forsch 62:521–586

    CAS  PubMed  Google Scholar 

  • Kirsche W (1983) The significance of matrix zones for brain regeneration and brain transplantation with special consideration of lower vertebrates. In: Wallace RB, Das GD (eds) Neural tissue transplantation research. Springer-Verlag, New York, pp 65–104

    Google Scholar 

  • Kirsche K, Kirsche W (1964) Experimental study on the influence of olfactory nerve regeneration on forebrain regeneration of Ambystoma mexicanum. J Hirnforsch 7:315–333

    CAS  PubMed  Google Scholar 

  • Kirsche K, Kirsche W (1968) Ueber Homotransplantation eines Endhirndrittels von Ambystoma mexicanum. Z Mikrosk-Anat Forsch 79:223–243

    CAS  PubMed  Google Scholar 

  • Kleeberger SR, Werner IK (1982) Home range and homing behaviour of Plethodon cinereus in northern Michigan. Copeia 2:409–415

    Google Scholar 

  • Klüver H, Barrera E (1953) A method for the combined staining of cells and fibers in the central nervous system. J Neuropathol Exp Neurol 12:400–403

    PubMed  Google Scholar 

  • Kokoros JJ (1973) Efferent projections of the telencephalon in the toad (Bufo marinus) and tiger salamander (Ambystoma tigrinum). Thesis, Case Western Reserve University, Cleveland

    Google Scholar 

  • Kokoros JJ, Northcutt RG (1977) Telencephalic efferents of the tiger salamander Ambystoma tigrinum tigrinum (Green). J Comp Neurol 173:613–628

    CAS  PubMed  Google Scholar 

  • Korf HW (1976) Histological, histochemical, and electron microscopical studies on the nervous apparatus of the pineal organ in the tiger salamander, Ambystoma tigrinum. Cell Tiss Res 174:475–497

    CAS  Google Scholar 

  • Kreht H (1930) Ueber die Faserzüge im Zentralnervensystem von Salamandra maculosa L. Z Mikrosk-Anat Forsch 23:239–320

    Google Scholar 

  • Kreht H (1931) Ueber die Faserzüge im Zentralnervensystem von Proteus anguineus Laur. Z Mikrosk-Anat Forsch 25:381–425

    Google Scholar 

  • Kreht H (1937) Der Nucleus mesencephalicus trigemini (Nucleus magnocellularis tecti) bei Amphibien. Z Mikrosk-Anat Forsch 41:417–432

    Google Scholar 

  • Kreht H (1940a) Die markhaltige Fasersysteme im Gehirn der Anuren und Urodelen und ihre Myelogenie; zugleich ein kritischer Beitrag zu den Flechsigschen myelogenetischen Grundgesetzen. I. Einleitung und Medulla oblongata. Z Mikrosk-Anat Forsch 48:108–180

    Google Scholar 

  • Kreht H (1940b) Ibid. II. Kleinhirn, Mittelhirn, Zwischenhirn und Endhirn. Z Mikrosk-Anat Forsch 48:191–286

    Google Scholar 

  • Krug L (1993) Vergleichende Chemoarchitektur im Vorderhirn von Ichthyophis kohtaoensis (Gymophiona) and Triturus alpestris (Urodela). Thesis, Technische Hochschule, Darmstadt

    Google Scholar 

  • Krug L, Wicht H, Northcutt RG (1992) Afferent and efferent connections of the thalamic eminence in the axolotl, Ambystoma mexicanum. Neurosci Lett 149:145–148

    Google Scholar 

  • Kuhlenbeck H (1922) Zur Morphologie des Gymnophionengehirns. Jenaer Z Naturwiss 58:453–484

    Google Scholar 

  • Kuhlenbeck H (1926) Betrachtungen über den funktionellen Bauplan des Zentralnervensystems. Okajimas Folia Anat Jap 4:111–135

    Google Scholar 

  • Kuhlenbeck H (1927) Vorlesungen über das Zentralnervensystems der Wirbeltiere. Fischer, Jena

    Google Scholar 

  • Kuhlenbeck H (1929) Ueber die Grundbestandteile des Zwischenhirnbauplanes der Anamnier. Morphol Jahrb 63:50–95

    Google Scholar 

  • Kuhlenbeck H (1970) A note on the morphology of the hypophysis in the gymnophione Schistomepum thomense. Okajimas Folia Anat Jap 46:307–319

    CAS  Google Scholar 

  • Kuhlenbeck H, Malewitz TD, Beasley AB (1967) Further observations on the morphology of the forebrain in Gymnophiona, with reference to the topologic vertebrate forebrain pattern. In: Hassler R, Stephan H (eds) Evolution of the forebrain. Plenum, New York, pp 9–19

    Google Scholar 

  • Kühn ER, Jacobs GFM (1989) Metamorphosis. In: Armstrong JB, Malacinski GM (eds) Developmental biology of the axolotl. Oxford University Press, New York, pp 189–199

    Google Scholar 

  • Kuljis RO, Karten HJ (1982) Laminar organization of peptidelike immunoreactivity in the anuran optic tectum. J Comp Neurol 217:239–251

    Google Scholar 

  • Lamas J, Rodicio C, Caruncho H, Anadon R (1988) Monoaminergic systems of the hypothalamus of ten amphibian species: a histofluorescence study. J Hirnforsch 29:289–297

    CAS  PubMed  Google Scholar 

  • Landacre FL (1921) The fate of the neural crest in the head of the urodeles. J Comp Neurol 33:1–43

    Google Scholar 

  • Lannoo MJ (1985) Neuromast topography in Ambystoma larvae. Copeia 1985:535–539

    Google Scholar 

  • Lannoo MJ (1987a) Neuromast topography in anuran amphibians. J Morphol 191:115–129

    Google Scholar 

  • Lannoo MJ (1987b) Neuromast topography in urodele amphibians. J Morphol 191:247–263

    Google Scholar 

  • Lannoo MJ, Smith SC (1989) The lateral line system. In: Armstrong JB, Malacinski GM (eds) Developmental biology of the axolotl. Oxford University Press, New York, pp 176–186

    Google Scholar 

  • Larsell O (1920) The cerebellum of Amblystoma. J Comp Neurol 31:259–282

    Google Scholar 

  • Larsell O (1925) The development of the cerebellum in the frog (Hyla regilla) in relation to the vestibular and lateralline systems. J Comp Neurol 39:249–289

    Google Scholar 

  • Larsell O (1931) The cerebellum of Triturus torosus. J Comp Neurol 53:1–54

    Google Scholar 

  • Larsell O (1932) The development of the cerebellum in Amblystoma. J Comp Neurol 54:357–435

    Google Scholar 

  • Larsell O (1967) The comparative anatomy and histology of the cerebellum from myxinoids through birds. University of Minnesota Press, Minneapolis

    Google Scholar 

  • Lauder GV (1981) Form and function: structural analysis in evolutionary morphology. Paleobiology 7:430–442

    Google Scholar 

  • Lauder GV (1985) Aquatic feeding in lower vertebrates. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional vertebrate morphology. Harvard University Press, Cambridge, MA, pp 210–229

    Google Scholar 

  • Lauder GV, Schaffer HB (1985) Functional morphology of the feeding mechanism in aquatic ambystomatid salamanders. J Morphol 185:297–326

    CAS  PubMed  Google Scholar 

  • Leber SM, Model PG (1991a) A light and electron microscopic study of the development of the Mauthner cell and the vestibular nerve in the axolotl. J Comp Neurol 313:17–30

    CAS  PubMed  Google Scholar 

  • Leber SM, Model PG (1991b) Effect of precocious and delayed afferent arrival on synapse localization on the amphibian Mauthner cell. J Comp Neurol 313:31–44

    CAS  PubMed  Google Scholar 

  • Leghissa S (1949) Ricerche anatomo-comparative sul sistema longitudinale mediale nella serie dei vertebrati. Comment Pont Acad Sci 13:153–196

    Google Scholar 

  • Leghissa S (1962) L’evoluzione del tetto ottico nei bassi vertebrati. Arch Ital Anat Embriol 67:343–413

    Google Scholar 

  • Lehouelleur J, Chatelain A (1974) Analysis of electrical responses of newt skeletal muscle fibres in response to direct and indirect stimulation. J Physiol (Paris) 68:615–632

    CAS  Google Scholar 

  • Leon-Olea M, Sanchez-Alvarez M, Pina AL, Bayon A (1991) Evidence for enkephalin-and endorphin-immunoreactive cells in the anterior pituitary of the axolotl Ambystoma mexicanum. J Comp Neurol 305:412–420

    CAS  PubMed  Google Scholar 

  • Leutenegger S (1972) Hirn, Hirnnerven und Geruchsorgan von Nectocaecilia haydee (Gymnophionen). Thesis, University of Basel

    Google Scholar 

  • Lewis ER, Leverenz EL, Bialek W (1985) The vertebrate inner ear. CRC Press, Boca Raton

    Google Scholar 

  • Lindquist SB, Bachmann MD (1982) The role of visual and olfactory cues in the prey catching behavior of the tiger salamander Ambystoma tigrinum. Copeia 1:81–90

    Google Scholar 

  • Linke R, Roth G (1989) Morphology of retinal ganglion cells in lungless salamanders (Farn. Plethodontidae): an HRP and Golgi study. J Comp Neurol 289:361–375

    CAS  PubMed  Google Scholar 

  • Linke R, Roth G (1990) Optic nerves in plethodontid salamanders (Amphibia, Urodela): neuroglia, fiber spectrum and myelination. Anat Embryol 181:37–48

    CAS  PubMed  Google Scholar 

  • Linke R, Roth G, Rottluff B (1986) Comparative studies of the eye morphology in lungless salamanders, family Plethodontidae, and the effect of miniaturization. J Morphol 189:131–143

    Google Scholar 

  • Lombard RE, Wake DB (1977) Tongue evolution in the lungless salamanders, family Plethodontidae. II. Function and evolutionary diversity. J Morphol 153:39–80

    CAS  PubMed  Google Scholar 

  • Lombard RE, Wake DB (1987) Tongue evolution in the lungless salamanders, family Plethodontidae. IV. Phylogeny of plethodontid salamanders and the evolution of reeding dynamics. Syst Zool 35:532–551

    Google Scholar 

  • Luthardt G, Roth G (1983) The interaction of the visual and the olfactory system in guiding prey catching behavior in Salamandra salamandra. behavior 83:69–79

    Google Scholar 

  • Mackay-Sim A, Nathan MH (1984) The projection from the olfactory epithelium to the olfactory bulb in the salamander Ambystoma tigrinum. Anat Embryol 170:93–97

    CAS  PubMed  Google Scholar 

  • Malacarne G, Giacoma C (1980) Effects of lesions to the rostral preoptic area on courtship behaviour in the male crested newt: Triturus cristatus carnifex Laurenti. Monit Zool Ital 14:9–17

    Google Scholar 

  • Malacarne G, Vellano C (1982) Effects of nostril plugging and of habenulectomy on sexual behaviour in the male crested newt. Behav Proc 7:307–317

    Google Scholar 

  • Malacinski GM (1989) Developmental genetics. In: Armstrong JB, Malacinski GM (eds) Developmental biology of the axolotl. Oxford University Press, New York, pp 102–109

    Google Scholar 

  • Manteuffel G (1982) The accessory optic system in the newt, Triturus cristatus: unitary response properties from the basal optic neuropil. Brain Behav Evol 21:175–184

    CAS  PubMed  Google Scholar 

  • Manteuffel G (1984) Electrophysiology and anatomy of direction-specific pretectal units in Salamandra salamandra. Exp Brain Res 54:415–425

    CAS  PubMed  Google Scholar 

  • Manteuffel G (1985) Monocular and binocular optic inputs to salamander pretectal neurons: intracellular recording and HRP labeling study. Brain Behav Evol 27:1–10

    CAS  PubMed  Google Scholar 

  • Manteufelfel G (1992) Control of gaze in salamanders. In: Berthoz A, Graf W, Vidal PP (eds) The head-neck sensory motor system. Oxford University Press, New York, pp 88–90

    Google Scholar 

  • Manteuffel G, Naujoks-Manteuffel C (1990) Anatomical connections and electrophysiological properties of toral and dorsal tegmental neurons in the terrestrial urodele Salamandra salamandra. J Hirnforsch 31:65–76

    CAS  PubMed  Google Scholar 

  • Manteuffel G, Plasa L, Sommer TJ, Wess O (1977) Involuntary eye movements in salamanders. Naturwissenschaften 64:533

    CAS  PubMed  Google Scholar 

  • Manteuffel G, Petersen J, Himstedt W (1983) Optic nystagmus and nystagmogen centers in the European fire salamander (Salamandra salamandra). Zool Jahrb Physiol 87:113–125

    Google Scholar 

  • Marchesini D, Marini M (1968) Osservazioni sulle cellule di Rohon-Beard durante lo sviluppo di un Anfibio urodelo. Rend Accad Naz Lincei (Serie VIII) 45:84–89

    Google Scholar 

  • Marín O, Smeets WJAJ, González A (1996) Do amphibians have a true locus coeruleus?. Neuroreport 7:1447–1451

    PubMed  Google Scholar 

  • Marín O, González A, Smeets WJAJ (1997a) Basal ganglia organization in amphibians: afferent connections to the striatum and the nucleus accumbens. J Comp Neurol 378:16–49

    PubMed  Google Scholar 

  • Marín O, Smeets WJAJ, González A (1997b) Basal ganglia organization in amphibians: catecholaminergic innervation of the striatum and the nucleus accumbens. J Comp Neurol 378:50–69

    PubMed  Google Scholar 

  • Marín O, González A, Smeets WJAJ (1997c) Basal ganglia organization in amphibians: efferent connections of the striatum and the nucleus accumbens. J Comp Neurol 380:23–50

    PubMed  Google Scholar 

  • Masino T, Grobstein P (1990) Tectal connectivity in the frog Rana pipiens: tectotegmental projections and a general analysis of topographic organization. J Comp Neurol 291:103–127

    CAS  PubMed  Google Scholar 

  • McCormick CA (1982) The organization of the octavolateralis area in actinopterygian fishes: a new interpretation. J Morphol 171:159–181

    Google Scholar 

  • McCormick CA (1988) Evolution of auditory pathways in the Amphibia. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The evolution of the amphibian auditory system, Wiley, New York, pp 587–612

    Google Scholar 

  • McCormick CA, Braford MR Jr (1987) Central connections of the octavolateralis system: evolutionary considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer-Verlag, New York, pp 773–756

    Google Scholar 

  • McKibben PS (1911) The nervus terminalis in urodele Amphibia. J Comp Neurol 21:249–289

    Google Scholar 

  • Medina L, Smeets WJAJ (1991) Comparative aspects of the basal ganglia-tectal pathways in reptiles. J Comp Neurol 308:614–629

    CAS  PubMed  Google Scholar 

  • Meek J, Joosten HWJ, Steinbusch HWM (1989) The distribution of dopamine immunoreactivity in the brain of the mormyrid teleost Gnathonemus petersii. J Comp Neurol 281:362–383

    CAS  PubMed  Google Scholar 

  • Milner AR (1988) The relationships and origin of living amphibians. In: Benton MJ (ed) The phylogeny and classification of the tetrapods, vol I: amphibians, reptiles and birds. Clarendon, Oxford, pp 59–102

    Google Scholar 

  • Moffat AJM, Caprinaca RR (1976) Auditory sensivity of the saccule of the American toad (Bufo americanus). J Comp Physiol 105:1–8

    Google Scholar 

  • Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97

    CAS  PubMed  Google Scholar 

  • Montgomery N, Fite KV, Taylor M, Bengston L (1982) Neural correlates of optokinetic nystagmus in the mesencephalon of Rana pipiens: a functional analysis. Brain Behav Evol 21:137–150

    CAS  PubMed  Google Scholar 

  • Muneoka K, Bryant SV, Gardiner DM (1989) Growth control in limb regeneration. In: Armstrong JB, Malacinski GM (eds) Developmental biology of the axolotl. Oxford University Press, New York, pp 143–156

    Google Scholar 

  • Muñoz A, Muñoz M, González A, ten Donkelaar HJ (1994) Spinothalamic projections in amphibians as revealed with anterograde tracing techniques. Neurosci Lett 171:81–84

    PubMed  Google Scholar 

  • Muñoz A, Muñoz M, González A, ten Donkelaar HJ (1997a) Spinal ascending pathways in amphibians: cells or origin and main targets. J Comp Neurol 378:205–228

    PubMed  Google Scholar 

  • Muñoz A, Muñoz M, González A, ten Donkelaar HJ (1997b) Organization of the caudal rhombencephalic alar plate of the ribbed newt, Pleurodeles waltl: evidence for the present of dorsal column and lateral cervical nuclei. Brain Behav Evol in press

    Google Scholar 

  • Münz H, Claas B (1991) Activity of lateral line efferents in the axolotl (Ambystoma mexicanum). J Comp Physiol A 169:461–469

    Google Scholar 

  • Münz H, Claas B, Fritsch B (1984) Electroreceptive and mechanoreceptive units in the lateral line of the axolotl Ambystoma mexicanum. J Comp Physiol A 154:33–44

    Google Scholar 

  • Murakami S, Kikuyama S, Arai Y (1992) The origin of the luteinizing hormone-releasing hormone (LHRH) neurons in newts (Cynops pyrrhogaster): the effect of olfactory placode ablation. Cell Tiss Res 269:21–27

    CAS  Google Scholar 

  • Muske LE (1993) Evolution of gonadotropin-releasing hormone (GnRH) neuronal systems. Brain Behav Evol 42:215–230

    CAS  PubMed  Google Scholar 

  • Muske LE, Moore FL (1988) The nervus terminalis in amphibians: anatomy, chemistry and relationship with the hypothalamic gonadotropin-releasing hormone system. Brain Behav Evol 32:141–150

    CAS  PubMed  Google Scholar 

  • Nagai T, Matsushima M (1990) Morphology and distribution of the glossopharyngeal nerve afferent and efferent neurons in the Mexican salamander, axolotl: a cobaltic-lysine study. J Comp Neurol 302:473–484

    CAS  PubMed  Google Scholar 

  • Naujoks-Manteuffel C, Manteuffel G (1986) Internuclear connections between the pretectum and the accessory optic system in Salamandra salamandra. Cell Tiss Res 243:595–602

    Google Scholar 

  • Naujoks-Manteuffel C, Manteuffel G (1988) Origins of descending projections to the medulla oblongata and rostral medulla spinalis in the urodele Salamandra salamandra (Amphibia). J Comp Neurol 273:187–206

    CAS  PubMed  Google Scholar 

  • Naujoks-Manteuffel C, Roth G (1989) Astroglial cells in a salamander brain (Salamandra salamandra) as compared to mammals: a glial fibrillary acidic protein immunohistochemistry study. Brain Res 487:397–410

    CAS  PubMed  Google Scholar 

  • Naujoks-Manteuffel C, Manteuffel G, Himstedt W (1986) Localization of motoneurons innervating the extraocular muscles in Salamandra salamandra L. (Amphibia, Urodela). J Comp Neurol 254:133–141

    CAS  PubMed  Google Scholar 

  • Naujoks-Manteuffel C, Manteuffel G, Himstedt W (1988) On the presence of a nucleus ruber in the urodele Salamandra salamandra and the caelilian Ichthyophis kohtaoensis. Behav Brain Res 28:29–32

    CAS  PubMed  Google Scholar 

  • Naujoks-Manteuffel C, Himstedt W, Gläsener-Cipollone G (1994) Distribution of GABA-immunoreactive neurons in the brain of adult and developing salamanders (Pleurodeles waltli, Triturus alpestris). Cell Tiss Res 276:485–501

    Google Scholar 

  • Neary TJ (1990) The pallium of anuran amphibians. In: Jones EG, Peters A (eds) Cerebral cortex, vol 8 A: comparative structure and evolution of cerebral cortex, part I. Plenum, New York, pp 107–138

    Google Scholar 

  • Neary TJ, Northcutt RG (1983) Nuclear organization of the bull frog diencephalon. J Comp Neurol 213:262–278

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1964) Comparative anatomy of the spinal cord. Prog Brain Res 11:1–57

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1967a) Comparative anatomy of olfactory centres and tracts. Prog Brain Res 23:1–64

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1967b) Comparative anatomy of the cerebellum. Prog Brain Res 25:1–93

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1974) Topological analysis of the brain stem: a general introduction. J Comp Neurol 156:255–276

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R, Cornelisz M (1971) Ascending projections from the spinal cord in the axolotl (Ambystoma mexicanum). Anat Rec 169:388

    Google Scholar 

  • Nieuwkoop PD (1955) Origin and establishment of organization patterns in embryonic fields during early development in amphibians and birds especially in the nervous system and its substrate. Proc Koninkl Ned Akad Wetenschap 58:219–239

    Google Scholar 

  • Nieuwkoop PD, Sutasurya LA (1976) Embryological evidence for a possible polyphyletic origin of the recent amphibians. J Embryol Exp Morphol 35:159–167

    CAS  PubMed  Google Scholar 

  • Nishikawa KC, Roth G, Dicke U (1991) Motor neurons and motor columns of the anterior spinal cord of salamanders: posthatching development and phylogenetic distribution. Brain Behav Evol 37:368–382

    CAS  PubMed  Google Scholar 

  • Nordlander RH, Singer M (1978) The role of ependyma in regeneration of the spinal cord in the urodele amphibian tail. J Comp Neurol 180:349–374

    CAS  PubMed  Google Scholar 

  • Nordlander RH, Singer M (1982a) Spaces precede axons in Xenopus embryonic spinal cord. Exp Neurol 75:221–228

    CAS  PubMed  Google Scholar 

  • Nordlander RH, Singer M (1982b) Morphology and position of growth cones in the developing Xenopus spinal cord. Dev Brain Res 4:181–193

    Google Scholar 

  • Northcutt RG (1980) Central auditory pathways in anamniotic vertebrates. In: Popper AN, Fay RR (eds) Comparative studies of hearing in vertebrates. Springer-Verlag, New York, pp 79–118

    Google Scholar 

  • Northcutt RG (1981) Evolution of the telencephalon in nonmammals. Ann Rev Neurosci 4:301–350

    CAS  PubMed  Google Scholar 

  • Northcutt RG (1984) Evolution of the vertebrate central nervous system: patterns and processes. Amer Zool 24:701–716

    Google Scholar 

  • Northcutt RG (1987) Lungfish neural characters and their bearing on sarcopterygian phylogeny. J Morphol, Suppl 1:277–297

    Google Scholar 

  • Northcutt RG (1989) The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer-Verlag, Berlin Heidelberg New York, pp 17–78

    Google Scholar 

  • Northcutt RG (1992) Distribution and innervation of lateral line organs in the axolotl. J Comp Neurol 325:95–123

    CAS  PubMed  Google Scholar 

  • Northcutt RG, Bleckmann H (1993) Pit organs in axolotls: a second class of lateral line neuromasts. J Comp Physiol A 172:439–446

    CAS  PubMed  Google Scholar 

  • Northcutt RG, Brändle K (1995) Development of branchiomeric and lateral line nerves in the axolotl. J Comp Neurol 355:427–454

    CAS  PubMed  Google Scholar 

  • Northcutt RG, Kicliter E (1980) Organization of the amphibian telencephalon. In: Ebbesson SOE (ed) Comparative neurology of the telencephalon. Plenum, New York, pp 203–255

    Google Scholar 

  • Northcutt RG, Plassmann W (1989) Electrosensory activity in the telencephalon of the axolotl. Neurosci Lett 99:79–84

    CAS  PubMed  Google Scholar 

  • Northcutt RG, Royce GJ (1975) Olfactory bulb projections in the bullfrog Rana catesbeiana. J Morphol 145:251–268

    CAS  PubMed  Google Scholar 

  • Oksche A (1958) Histologische Untersuchungen über die Bedeutung des Ependyms, der Glia und der Plexus chorioidei für den Kohlenhydratstoffwechsel des ZNS. Z Zellforsch 48:74–129

    CAS  PubMed  Google Scholar 

  • Oksche A (1971) Sensory and glandular elements of the pineal organ. In: Wolstenholme GEW, Knight J (eds) The pineal gland. Churchill-Livingstone, Edinburgh, pp 127–146

    Google Scholar 

  • Olmo E (1983) Nucleotype and cell size in vertebrates: a review. Basic Appl Histochem 27:227–256

    CAS  PubMed  Google Scholar 

  • Opdam P, Nieuwenhuys R (1976) Topological analysis of the brain stem of the axolotl Ambystoma mexicanum. J Comp Neurol 165:285–306

    CAS  PubMed  Google Scholar 

  • Parent A (1979) Anatomical organization of monoamine-and acetylcholinesterase-containing neuronal systems in the vertebrate hypothalamus. In: Morgane P, Panksepp J (eds) Handbook of the hypothalamus, vol I: Anatomy of the hypothalamus. Dekker, New York, pp 511–554

    Google Scholar 

  • Parent A (1986) Comparative neurobiology of the basal ganglia. Wiley, New York

    Google Scholar 

  • Parent A, Poitras D, Dubé L (1984) Comparative anatomy of central monoaminergic systems. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 2: classical transmitters in the CNS. Elsevier, Amsterdam, pp 409–439

    Google Scholar 

  • Parsons TS (1967) Evolution of the nasal structure in the lower tetrapods. Amer Zool 7:397–413

    Google Scholar 

  • Parsons TS, Williams EE (1963) The relationship of modern Amphibia: a re-examination. Quart Rev Biol 38:26–53

    Google Scholar 

  • Pasteeis J (1942) New observations concerning the maps of presumptive areas of the young amphibian gastrula (Amblystoma and Discoglossus). J Exp Zool 89:255–281

    Google Scholar 

  • Perroteau I, Danger J-M, Biffo S, Pelletier G, Vaudry H, Fasolo A (1988) Distribution and characterization of neuropeptide Y-like immunoreactivity in the brain of the crested newt. J Comp Neurol 275:309–325

    CAS  PubMed  Google Scholar 

  • Piatt J (1943) The course and decussation of ectopic Mauthner’s fibers in Amblystoma punctatum. J Comp Neurol 79:165–183

    Google Scholar 

  • Piatt J (1955) Regeneration of the spinal cord in the salamander. J Exp Zool 29:177–208

    Google Scholar 

  • Piatt J (1957) Studies on the problem of nerve pattern. III. Innervation of the regenerated forelimb in Amblystoma. J Exp Zool 136:229–247

    CAS  PubMed  Google Scholar 

  • Regal PJ (1966) Feeding specializations and the classification of terrestrial salamanders. Evolution 20:392–407

    Google Scholar 

  • Reiner A, Brauth SE, Karten HJ (1984) Evolution of the amniote basal ganglia. Trends Neurosci 7:320–325

    Google Scholar 

  • Rettig G (1984) Neuroanatomische Untersuchungen der visuellen Projektionen bei Salamandern (Ordnung Caudata). Thesis, University of Bremen

    Google Scholar 

  • Rettig G (1988) Connections of the tectum opticum in two urodeles (Salamandra salamandra and Bolitoglossa subpalmata) with a special reference to the nucleus isthmi. J Hirnforsch 29:5–16

    CAS  PubMed  Google Scholar 

  • Rettig G, Roth G (1982) Afferent visual projections in three species of lungless salamanders (family Plethodontidae). Neurosci Lett 31:221–224

    CAS  PubMed  Google Scholar 

  • Rettig G, Roth G (1986) Retinofugal projections in salamanders of the family Plethodontidae. Cell Tiss Res 243:385–396

    Google Scholar 

  • Rettig G, Fritzsch B, Himstedt W (1981) Development of retinofugal neuropil areas in the brain of the alpine newt, Triturus alpestris. Anat Embryol 162:163–171

    CAS  PubMed  Google Scholar 

  • Retzius G (1881) Das Gehörorgan der Wirbeltiere, vol 1. Samson and Wallin, Stockholm

    Google Scholar 

  • Richter W (1968) Regenerative Vorgänge nach einseitiger Entfernung des caudalen Endhirnabschnittes einschliesslich des telo-diencephalen Grenzbereiches bei Ambystoma mexicanum. J Hirnforsch 10:515–534

    CAS  PubMed  Google Scholar 

  • Richter W, Kranz D (1981) Autoradiographische Untersuchungen der postnatalen Proliferationsaktivität in den Matrixzonen des Telencephalons und des Diencephalons beim Axolotl (Ambystoma mexicanum) unter Berücksichtigung der Proliferation im olfaktorischen Organ. Z Mikrosk-Anat Forsch 95:883–904

    CAS  PubMed  Google Scholar 

  • Riss W (1968) Introduction to a general theory of spinal organization. Brain Behav Evol 2:51–82

    Google Scholar 

  • Roberts A (1980) The function and role of two types of mechanoreceptive “free” nerve endings in the head skin of amphibian embryos. J Comp Physiol 135:341–348

    Google Scholar 

  • Roberts A, Clarke JDW (1983) The sensory systems of embryos of the newt: Triturus vulgaris. J Comp Physiol 152:529–534

    Google Scholar 

  • Roberts A, Hayes BP (1977) The anatomy and function of “free” nerve endings in an amphibian skin sensory system. Proc Roy Soc (Lond) B 196:415–429

    CAS  Google Scholar 

  • Roberts BL, Meredith GE, Maslam S (1989) Immunocytochemical analysis of the dopamine system in the brain and spinal cord of the European eel, Anguilla anguilla. Anat Embryol 180:401–412

    CAS  PubMed  Google Scholar 

  • Roper S (1983) Regenerative impulses in taste cells. Science 220:1311–1312

    CAS  PubMed  Google Scholar 

  • Roper SD (1989) The cell biology of vertebrate taste receptors. Ann Rev Neurosci 12:329–353

    CAS  PubMed  Google Scholar 

  • Rosen DE, Forey PL, Gardiner BG, Patterson C (1981) Lungfishes, tetrapods, paleontology and plesiomorphy. Bull Amer Mus Natur Hist 167:159–276

    Google Scholar 

  • Ross RJ, Smith JJB (1980) Detection of substrate vibrations by salamanders: frequency sensivity of the ear. Comp Biochem Physiol 65A:167–172

    Google Scholar 

  • Roth G (1976) Experimental analysis of the prey catching behavior of Hydromantes italicus (Amphibia, Plethodontidae). J Comp Physiol 109:47–58

    Google Scholar 

  • Roth G (1982) Responses in the optic tectum of the salamander Hydromantes italicus to moving prey stimuli. Exp Brain Res 45:386–392

    CAS  PubMed  Google Scholar 

  • Roth G (1987) Visual behavior in salamanders. Studies in brain function, vol 14. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Roth G, Himstedt W (1978) Response characteristics of neurons in the tectum opticum of Salamandra. Naturwissenschaften 65:657

    CAS  PubMed  Google Scholar 

  • Roth G, Schmidt A (1993) The nervous system of plethodontid salamanders: insight into the interplay between genome, organism, behavior, and ecology. Herpetologica 49:185–194

    Google Scholar 

  • Roth G, Wake DB (1985a) The structure of the brainstem and cervical spinal cord in lungless salamanders (family Plethodontidae) and its relation to feeding. J Comp Neurol 241:99–110

    CAS  PubMed  Google Scholar 

  • Roth G, Wake DB (1985b) Trends in the functional morphology and sensorimotor control of feeding behavior in salamanders: an example of the role of internal dynamics in evolution. Acta Biotheoret 34:175–192

    CAS  Google Scholar 

  • Roth G, Wake DB (1989) Conservatism and innovation in the evolution of feeding in vertebrates. In: Wake DB, Roth G (eds) Complex organismal functions: integration and evolution in vertebrates. Wiley, New York, pp 7–22

    Google Scholar 

  • Roth G, Wake DB, Wake MH, Rettig G (1984) Distribution of accessory and hypoglossal nerves in the hindbrain and spinal cord of lungless salamanders, family Plethodontidae. Neurosci Lett 44:53–57

    CAS  PubMed  Google Scholar 

  • Roth G, Nishikawa K, Dicke U, Wake DB (1988a) Topography and cytoarchitecture of the motor nuclei in the brain stem of salamanders. J Comp Neurol 278:181–194

    CAS  PubMed  Google Scholar 

  • Roth G, Rottluff B, Linke R (1988b) Miniaturization, genome size and the origin of functional constraints in the visual system of salamanders. Naturwissenschaften 75:297–304

    CAS  PubMed  Google Scholar 

  • Roth G, Naujoks-Manteuffel C, Grunwald W (1990a) Cytoarchitecture of the tectum mesencephali in salamanders: a Golgi and HRP study. J Comp Neurol 291:27–42

    CAS  PubMed  Google Scholar 

  • Roth G, Nishikawa K, Wake DB, Dicke U, Matsushima T (1990b) Mechanics and neuromorphology of feeding in amphibians. Neth J Zool 40:115–135

    Google Scholar 

  • Roth G, Rottluff B, Grunwald W, Hanken J, Linke R (1990c) Miniaturization in plethodontid salamanders (Caudata: Plethodontidae) and its consequences for the brain and visual system. Biol J Linnean Soc 40:165–190

    Google Scholar 

  • Roth G, Dicke U, Nishikawa K, (1992) How do ontogeny, morphology, and physiology of sensory systems constrain and direct the evolution of amphibians? Am Nat 139:S105–S124

    Google Scholar 

  • Roth G, Nishikawa K, Naujoks-Manteuffel C, Schmidt A, Wake DB (1993) Paedomorphosis and simplification in the nervous system of salamanders. Brain Behav Evol 42:137–170

    CAS  PubMed  Google Scholar 

  • Roth G, Blanke J, Ohle M (1995) Brain size and morphology in miniaturized plethodontid salamanders. Brian Behav Evol 45:84–95

    CAS  Google Scholar 

  • Röthig P (1923) Ueber das Zwischenhirn der Amphibien. Arch Mikr Anat 98:616–645

    Google Scholar 

  • Röthig P (1927) Beiträge zum Studium des Zentralnervensystems der Wirbeltiere. 12. Marchi-Untersuchungen am Ranagehirn. Z Mikr-Anat Forsch 11:551–564

    Google Scholar 

  • Royce GJ, Northcutt RG (1969) Olfactory bulb projections in the tiger salamander (Ambystoma tigrinum) and the bullfrog (Rana catesbeiana). Anat Rec 163:254

    Google Scholar 

  • Russell IJ (1976) Amphibian lateral line receptors. In: Llinás R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 513–550

    Google Scholar 

  • Rutishauser U, Jessell TM (1988) Cell adhesion molecules in vertebrate neural development. Physiol Rev 68:819–857

    CAS  PubMed  Google Scholar 

  • Sarasin P, Sarasin F (1887–1890) Zur Entwicklungsgeschichte und Anatomie der ceylonesischen Blindwühle Ichthyophis glutinosus, parts 1–4. CW Kreidel’s Verlag, Wiesbaden

    Google Scholar 

  • Sassoè-Pognetto M, Pairault C, Clairambault P, Fasolo A (1991) The connections of the anterior pallium in Pleurodeles waltl and Triturus carnifex: an HRP study. J Hirnforsch 32:397–407

    PubMed  Google Scholar 

  • Sassoè-Pognetto M, Artero C, Mazzi V, Franzoni MF (1995) Connections of the posterior pallium in the crested newt, Triturus carnifex. Brain Behav Evol 45:195–208

    PubMed  Google Scholar 

  • Scalia F (1972) The projections of the accessory olfactory bulb in the frog. Brain Res 36:409–411

    CAS  PubMed  Google Scholar 

  • Scalia F (1976) Structure of the olfactory and accessory olfactory systems. In: Llinás R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 386–406

    Google Scholar 

  • Scalia F, Gallousis G, Roca S (1991) Differential projections of the main and accessory olfactory bulb in the frog. J Comp Neurol 305:443–461

    CAS  PubMed  Google Scholar 

  • Schaeffer B (1965) The rhipidistian-amphibian transition. Amer Zool 5:267–276

    Google Scholar 

  • Schemann E (1931) Die Rückbildung der Lateralis-Ganglien bei Salamandra atra. Morphol Jahrb 68:97–104

    Google Scholar 

  • Schmalhausen II (1968) The origin of terrestrial vertebrates. Academic, New York

    Google Scholar 

  • Schmidt A, Manteuffel C (1984) Olfactorische Projektionen beim Feuersalamander, Salamandra salamandra L. Verh Dtsch Zool Ges 77:325

    Google Scholar 

  • Schmidt A, Roth G (1990) Central olfactory and vomeronasal pathways in salamanders. J Hirnforsch 31:543–553

    CAS  PubMed  Google Scholar 

  • Schmidt A, Roth G (1993) Patterns of cellular proliferation and migration in the developing tectum mesencephali of the frog Rana temporaria and the salamander Pleurodeles waltl. Cell Tiss Res 272:273–287

    Google Scholar 

  • Schmidt A, Wake MH (1990) Olfactory and vomeronasal systems of caecilians (Amphibia: Gymnophiona). J Morphol 205:255–268

    Google Scholar 

  • Schmidt A, Naujoks-Manteuffel C, Roth G (1988) Olfactory and vomeronasal projections and the pathway of the nervus terminalis in ten species of salamanders. A wholemount study employing the horseradish technique. Cell Tiss Res 251:45–50

    Google Scholar 

  • Schmidt A, Roth G, Ernst M (1989) Distribution of substance P-like, leucine-enkephalin-like, and bombesine-like immunoreactivity and acetylcholinesterase activity in the visual system of salamanders. J Comp Neurol 288:123–135

    CAS  PubMed  Google Scholar 

  • Schonbach C (1969) The neuroglia in the spinal cord of the newt, Triturus viridescens. J Comp Neurol 135:93–120

    CAS  PubMed  Google Scholar 

  • Schönheit, B Rehmer H (1967) Regeneration des durchtrennten Rückenmarkes bei Pleurodeles waltlii. Z Mi-krosk-Anat Forsch 77:453–528

    Google Scholar 

  • Schreckenberg GM, Jacobson AG (1975) Normal stages of development of the axolotl, Ambystoma mexicanum. Dev Biol 42:391–400

    CAS  PubMed  Google Scholar 

  • Schuch K (1934) Das Geruchsorgan von Triton alpestris. Zool Jb Anat 59:69–134

    Google Scholar 

  • Schultze H-P (1987) Dipnoans as sarcopterygians. J Morphol, Suppl 1:39–74

    Google Scholar 

  • Schwenk GC, Hibbard E (1977) An autoradiographic study of optic fiber projections from eye grafts in eyeless mutant axolotls. Exp Neurol 55:498–503

    CAS  PubMed  Google Scholar 

  • Senn DG (1974) Notes on the amphibian and reptilian thalamus. Acta Anat 87:555–596

    CAS  PubMed  Google Scholar 

  • Senn D, Farner H-P (1977) Embryonale Muster in der Anatomie von Amphibien. Salamandra 13:89–104

    Google Scholar 

  • Sessions SK, Larson A (1987) Developmental correlates of genome size in plethodontid salamanders and their implications for genome evolution. Evolution 41:1239–1251

    Google Scholar 

  • Seydel O (1895) Ueber die Nasenhöhle und das Jacobsonische Organ der Amphibien. Morphol Jahrb 23:453–543

    Google Scholar 

  • Shaw G (1798) Gyrinus mexicanus Shaw. In: Shaw (ed) Naturalist’s Miscellany 9:343–344

    Google Scholar 

  • Sherwood NM, Parker DB (1990) Neuropeptide families: an evolutionary perspective. J Exp Zool, Suppl 4:63–71

    CAS  Google Scholar 

  • Simpson SB Jr (1983) Fasciculation and guidance of regenerating central axons by the ependyma. In: Kao CC, Bunge RP, Reier PJ (eds) Spinal cord reconstruction. Raven, New York, pp 151–162

    Google Scholar 

  • Sims TJ (1977) The development of monoamine-containing neurons in the brain and spinal cord of the salamander, Ambystoma mexicanum. J Comp Neurol 173:319–335

    CAS  PubMed  Google Scholar 

  • Singer M (1954) Induction of regeneration of the forelimb of the postmetamorphic frog by augmentation of the nerve supply. J Exp Zool 126:419–472

    Google Scholar 

  • Singer M, Caston JD (1972) Neurotrophic dependence of macromolecular synthesis in the early limb regenerate of the newt, Triturus. J Embryol Exp Morphol 28:1–11

    CAS  PubMed  Google Scholar 

  • Singer M, Nordlander RH, Egar M (1979) Axonal guidance during embryogenesis and regeneration in the spinal cord of the newt: the blueprint hypothesis of neuronal pathway patterning. J Comp Neurol 185:1–22

    CAS  PubMed  Google Scholar 

  • Slack JMW (1989) Regional specification in early development. In: Armstrong JB, Malacinski GM (eds) Developmental biology of the axolotl. Oxford University Press, New York, pp 52–61

    Google Scholar 

  • Smeets WJAJ, González A (1990) Are putative dopamineaccumulating cell bodies in the hypothalamic periventricular organ a primitive brain character of non-mammalian vertebrates?. Neurosci Lett 114:248–252

    CAS  PubMed  Google Scholar 

  • Smith HM (1989) Discovery of the axolotl and its early history in biological research. In: Armstrong JB, Malacinski GM (eds) Developmental biology of the axolotl. Oxford University Press, New York, pp 3–12

    Google Scholar 

  • Smith SC, Lannoo MJ, Armstrong JB (1990) Development of the mechanoreceptive lateral-line system in the axolotl: placode specification, guidance of migration, and the origin of neuromast polarity. Anat Embryol 182:171–180

    CAS  PubMed  Google Scholar 

  • Snessarew P (1908) Ueber die Nervenfasern des Rhinencephalons beim Frosche. J Psychol Neurol 13:97–125

    Google Scholar 

  • Söderberg G (1922) Contributions to the forebrain morphology in amphibians. Acta Zool (Stockh) 3:65–121

    Google Scholar 

  • Soffe SR, Clarke JDW, Roberts A (1983) Swimming and other centrally generated motor patterns in newt embryos. J Comp Physiol 152:535–544

    Google Scholar 

  • Spallanzani L (1768) Prodomo di un Opera da Impremersi Sopra le Riproduzioni Animale Dato un Luce. G Montanari, Modena

    Google Scholar 

  • Spemann H, Mangold H (1924) Ueber Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Arch Mikrosk Anat Entw-Mech 100:599–638

    Google Scholar 

  • Sperry RW (1943) Visuomotor coordination in the newt (Triturus viridescens) after regeneration of the optic nerve. J Comp Neurol 79:33–55

    Google Scholar 

  • Sperry RW (1946) Ontogenetic development and maintenance of compensatory eye movements in complete absence of the optic nerve. J Comp Psychol 39:321–330

    CAS  PubMed  Google Scholar 

  • Stefanelli A (1944) Osservazioni sull’istogenesi del midollo spinale della coda rigenerata dei Tritoni. Boll Soc Ital Biol Sper 19:252–253

    Google Scholar 

  • Stefanelli A (1950) Some comments on regeneration in the central nervous system. In: Weiss P (ed) Genetic neurology. University of Chicago Press, Chicago, pp 210–211

    Google Scholar 

  • Stefanelli A, Capriata A (1943) La rigenerazione del midollo spinale della coda rigenerata dei Tritoni. Ric Morfol 20-21:607–633

    Google Scholar 

  • Stefanelli A, Cervi M (1946) La modalita del riallacciamento dei monconi di midollo spinale di tritoni adulti, separati asportando un segmente di midollo nella regione basale della coda. Boll Soc Ital Biol Sper 22:756–757

    Google Scholar 

  • Stefanelli A, Marini M, Trevisan P (1982) Mauthner cells and lateral-line system in land Salamandridae. Acta Embryol Morphol Exp 3:XXIII

    Google Scholar 

  • Steinbusch HWM, Verhofstad AAJ, Joosten HWJ (1978) Localization of serotonin in the central nervous system by immunohistochemistry: description of a specific and sensitive technique and some applications. Neuroscience 3:811–819

    CAS  PubMed  Google Scholar 

  • Steinbusch HWM, Verhofstad AAJ, Joosten HWJ (1982) Antibodies to serotonin for neuroimmunocytochemical studies. J Histochem Cytochem 30:756–780

    CAS  PubMed  Google Scholar 

  • Stensaas LJ (1983) Regeneration in the spinal cord of the newt Notophthalmus (Triturus) pyrrhogaster. In: Kao CC, Bunge RP, Reier PJ (eds) Spinal cord reconstruction. Raven, New York, pp 121–149

    Google Scholar 

  • Stephens N, Holder N (1985) A horseradish peroxidase study of motor neuron pools in the forelimb and hindlimb musculature of the axolotl. Proc Roy Soc (Lond) B 224:325–339

    CAS  Google Scholar 

  • Stephens N, Holder N (1987) The pattern of innervation in serially duplicated axolotl limbs: further evidence for the existence of local pathway cues?. Development 100:479–487

    CAS  PubMed  Google Scholar 

  • Stirling RV, Brändle K (1982) Expansion of the visual projection to the tectum of axolotls during metamorphosis. Dev Brain Res 5:343–345

    Google Scholar 

  • Stone LS (1922) Experiments on the development of the cranial ganglia and the lateral line sense organs in Amblystoma punctatum. J Exp Zool 35:421–496

    Google Scholar 

  • Stone LS (1931) Induction of the ear by the medulla and its relation to experiments on the lateralis system in Amphibia. Science 74:577

    Google Scholar 

  • Straznicky K, Székely G (1967) Functional adaptation of thoracic spinal cord segments in the newt. Acta Biol Acad Sci Hung 18:449–456

    CAS  PubMed  Google Scholar 

  • Strong OS (1895) The cranial nerves of Amphibia. J Morphol 10:101–230

    Google Scholar 

  • Studnička FK (1895) Ein Beitrag zur vergleichenden Histologie und Histogenese des Rückenmarkes. Sitz Ber Königl Böhm Gesells Wiss Mathemat-Naturwiss Classe 51:1–32

    Google Scholar 

  • Szabo T (1974) Anatomy of the specialized lateral line organs of electroreception. In: Fessard A (ed) Handbook of sensory physiology, vol III/3. Springer-Verlag, Berlin Heidelberg New York, pp 13–58

    Google Scholar 

  • Szarski H (1962) The origin of the Amphibia. Quart Rev Biol 37:189–241

    Google Scholar 

  • Szarski H (1977) Sarcopterygii and the origin of the tetrapods. In: Hecht MK, Goody PC, Hecht BM (eds) Major patterns in vertebrate evolution. Plenum, New York, pp 517–540

    Google Scholar 

  • Székely G (1965) Logical network for controlling limb movements in Urodela. Acta Physiol Acad Sci Hung 27:285–289

    PubMed  Google Scholar 

  • Székely G (1968) Development of limb movements: embryological, physiological and model studies. In: Wolstenholme GEW, O’Connor M (eds) CIBA Symp Growth Nervous System. Churchill, London, pp 77–93

    Google Scholar 

  • Székely G, Czéh G (1967) Localization of motoneurones in the limb moving spinal cord segment of Ambystoma. Acta Physiol Acad Sci Hung 32:3–18

    PubMed  Google Scholar 

  • Székely G, Czéh G (1971) Muscle activities of partially innervated limbs during locomotion in Ambystoma. Acta Physiol Acad Sci Hung 40:269–286

    PubMed  Google Scholar 

  • Székely G, Czéh G (1976) Organization of locomotion. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 765–792

    Google Scholar 

  • Székely G, Szentágothai J (1962) Experiments with “model nervous system”. Acta Biol Acad Sci Hung 12:253–269

    Google Scholar 

  • Székely G, Czéh G, Vörös G (1969) The activity pattern of limb muscles in freely moving normal and deafferented newts. Exp Brain Res 9:53–62

    PubMed  Google Scholar 

  • Taban CH, Cathieni M (1983) Distribution of substance P-like immunoreactivity in the brain of the newt (Triturus cristatus). J Comp Neurol 216:453–470

    CAS  PubMed  Google Scholar 

  • Tank PW, Holder N (1981) Pattern regulation in the limbs of urodelean amphibians. Ann Rev Biol 56:113–142

    Google Scholar 

  • Taylor DH (1972) Extraoptic photoreception and compass orientation in larval and adult salamanders. Anim Behav 20:233–236

    CAS  PubMed  Google Scholar 

  • Taylor DH, Adler K (1978) The pineal body: site of extraocular perception of celestial cues for orientation in the tiger salamander (Ambystoma tigrinum). J Comp Physiol 124:357–361

    Google Scholar 

  • ten Donkelaar HJ (1982) Organization of descending pathways to the spinal cord in amphibians and reptiles. Prog Brain Res 57:25–67

    PubMed  Google Scholar 

  • ten Donkelaar HJ (1988) Evolution of the red nucleus and rubrospinal tract. Behav Brain Res 28:9–20

    PubMed  Google Scholar 

  • ten Donkelaar HJ (1990) Brainstem mechanisms of behavior: comparative aspects. In: Klemm WR, Vertes RP (eds) Brainstem mechanisms of behavior. Wiley, New York, pp 199–237

    Google Scholar 

  • ten Donkelaar HJ, de Boer-van Huizen R, Schouten FTM, Eggen SJH (1981) Cells of origin of descending pathways to the spinal cord in the clawed toad (Xenopus laevis). Neuroscience 6:2297–3312

    PubMed  Google Scholar 

  • Thexton AJ, Wake DB, Wake MH (1977) Tongue function in the salamander Bolitoglossa occidentalis. Arch Oral Biol 22:361–366

    CAS  PubMed  Google Scholar 

  • Thireau M (1976) L’encéphalisation chez les Urodèles. I. Analyse volumétrique de l’encéphale et de ses étages: Recherche d’un lot d’espèces de “base”. Bull Mus Hist Nat Paris Zool 266:527–544

    Google Scholar 

  • Thireau M, Bauchot R, Platel R, Ridet J-M (1973) L’encéphale de Salamandra salamandra fastuosa Schreiber, 1912 (Amphibia, Caudata, Salamandridae): Etude préalable à des recherches quantitatives. Bull Mus Hist Nat Paris Zool 80:49–65

    Google Scholar 

  • Thomson KS (1967) The biology of the lobe-finned fishes. Biol Rev 44:91–154

    Google Scholar 

  • Tonge DA, Holder N, Jesani M (1985) Organisation of skeletal muscle in the urodele, Triturus cristatus: muscle fibre types and motor units. Proc Roy Soc (Lond) B 223:495–510

    CAS  Google Scholar 

  • Tóth P, Csank G, Lázár G (1985) Morphology of the cells of origin of descending pathways to the spinal cord in Rana esculenta. A tracing study using cobaltic-lysine complex. J Hirnforsch 26:365–383

    PubMed  Google Scholar 

  • Toyoshima K, Miyamoto K, Shimamura A (1987) Fine structure of taste buds in the tongue, palatal mucosa and gill arch of the axolotl, Ambystoma mexicanum. Okajimas Folia Anat Jpn 64:99–110

    CAS  PubMed  Google Scholar 

  • Trevisan PL, Marini M (1972) Osservazioni sulle cellule di Rohon-Beard in un Anfibio urodelo in sviluppo. Rend Accad Naz Lincei (Serie VIII) 52:965–969

    Google Scholar 

  • Uva B, Deplano S (1983) Olfactory structures in Hydromantes italicus: a morphological basis of a particular prey catching behavior. Bolletino Zool 50 (l-2):57–62

    Google Scholar 

  • van Gehuchten A (1897) La moèlle épinière des larves batra-ciens (Salamandra maculosa). Arch Biol 15:599–619

    Google Scholar 

  • Veenman CL (1990) Pallial organization in Xenopus laevis: a hodological and immunohistochemical study. The development of a structural concept on telencephalic function. Exp Brain Res Series 19:67–76

    Google Scholar 

  • Vesselkin NP, Ermakova TV, Kenigfest NB, Goikovic M (1980) The striatal connections in frog Rana temporaria: an HRP study. J Hirnforsch 21:381–392

    CAS  PubMed  Google Scholar 

  • Vigh B, Vigh-Teichmann I (1973) Comparative ultrastructure of the cerebrospinal fluid-contacting neurons. Int Rev Cytol 35:189–251

    CAS  PubMed  Google Scholar 

  • Vigh B, Vigh-Teichmann I, Aros B (1970) Ultrastructure of the CSF contacting neurons in the spinal cord in the newt (Triturus cristatus). Acta Morph Acad Sci Hung 18:369–382

    CAS  Google Scholar 

  • Vigh-Teichmann I, Vigh B, Aros B (1970) Ultrastructure of the CSF contacting neurons of the preoptic nucleus in the newt, Triturus cristatus. Acta Morph Acad Sci Hung 18:383–394

    CAS  Google Scholar 

  • Vigh-Teichmann I, Vigh B, Aros B (1971) Light and electron microscopic structure of the preoptic recess organ in the newt (Triturus cristatus). Acta Morph Acad Sci Hung 19:25–41

    CAS  Google Scholar 

  • Vogt W (1925) Gestaltungsanalyse am Amphibienkeim mit örtlicher Vitalfärbung. I. Methodik und Wirkungsweise der örtlichen Vitalfärbung mit Agar als Farbträger. Arch Entw-Mech Organ 106:542–610

    Google Scholar 

  • von Kupffer C (1906) Die Morphogenie des Zentralnervensystemes. In: Hertwig O (ed) Handbuch der vergleichenden und experimentellen Entwicklungslehre der Wirbeltiere, vol 2/3. Fischer, Jena

    Google Scholar 

  • Wahnschaffe U, Fritzsch B, Himstedt W (1985) The fine structure of the lateral-line organs of larval Ichthyophis (Amphibia, Gymnophiona). J Morphol 186:369–377

    Google Scholar 

  • Wake DB (1966) Comparative osteology and evolution of lungless salamanders, family Plethodontidae. Memoirs of the Southern California Academy of Sciences 4:1–111

    Google Scholar 

  • Wake DB (1976) On the correct scientific names of urodeles. Differentiation 6:195

    CAS  PubMed  Google Scholar 

  • Wake DB (1982) Functional and developmental constraints and opportunities in the evolution of feeding systems in urodeles. In: Mossakowski D, Roth G (eds) Environmental adaptation and evolution. Fischer, Stuttgart, pp 51–66

    Google Scholar 

  • Wake DB (1987) Adaptive radiation of salamanders in Middle American cloud forests. Ann Missouri Bot Gard 74:242–246

    Google Scholar 

  • Wake DB, Lynch JF (1976) The distribution, ecology, and evolutionary history of plethodontid salamanders in tropical America. Sci Bull Mus Nat Hist Los Angeles Co 25:1–65

    Google Scholar 

  • Wake DB, Roth G (1989) The linkage between ontogeny and phylogeny in the evolution of complex systems. In: Wake DB, Roth G (eds) Complex organismal functions: integration and evolution in vertebrates. Wiley, New York, pp 361–377

    Google Scholar 

  • Wake DB, Nishikawa K, Dicke U, Roth G (1988) Organization of the motor nuclei in the cervical spinal cord of salamanders. J Comp Neurol 278:195–208

    CAS  PubMed  Google Scholar 

  • Wallace H (1981) Vertebrate limb regeneration. Wiley, Chichester

    Google Scholar 

  • Webb MT (1969) A comparative cytological study of Mauthner cells in urodele amphibians and other Ichthyopsida and thyroid and Mauthner cell response to tail amputation in urodeles. Honors thesis, Bowdoin College, Brunswick, Maine

    Google Scholar 

  • Weiss P (1922) Die Funktion transplantierter Amphibienextremitäten. Ost Akad Wiss Math Naturwiss Klin Abt 1 59:199–201

    Google Scholar 

  • Weiss P (1936) Selectivity controlling the central-peripheral relations in the nervous system. Biol Rev 11:494–531

    Google Scholar 

  • Weiss P (1941) Self-differentiation of the basic patterns of coordination. Comp Psychol Monogr 17:1–96

    Google Scholar 

  • Weiss P (1950) The deplantation of fragments of nervous system in amphibians. J Exp Zool 113:397–461

    Google Scholar 

  • Welsch U, Schubert C, Tan SH (1976) Histological and histochemical observations on the neurosecretory cells in the diencephalon of Chthonerpeton indistinctum and Ichthyophis paucisulcus (Gymnophiona, Amphibia). Cell Tiss Res 175:137–145

    CAS  Google Scholar 

  • Wenz E, Himstedt W (1990) Telencephalic structures are involved in learning and memory in the newt Triturus alpestris. Naturwissenschaften 77:239–240

    CAS  PubMed  Google Scholar 

  • West CHK, Bernard RA (1978) Intracellular characteristics and responses of taste bud and lingual cells of the mudpuppy. J Gen Physiol 72:305–326

    CAS  PubMed  Google Scholar 

  • Wever EG (1985) The amphibian ear. Princeton University Press, New York

    Google Scholar 

  • White JS (1986) Comparative features of the surface morphology of the basilar papilla in five families of salamanders (Amphibia: Caudata). J Morphol 187:201–218

    CAS  PubMed  Google Scholar 

  • White JS, Baird IL (1982) Comparative morphological features of the caecilian inner ear with comments on the evolution of amphibian auditory structures. Scanning Electron Micr 111:1301–1312

    Google Scholar 

  • Wicht H, Himstedt W (1988) Topologic and connectional analysis of the dorsal thalamus of Triturus alpestris (Amphibia, Urodela, Salamandridae). J Comp Neurol 267:545–561

    CAS  PubMed  Google Scholar 

  • Wicht H, Himstedt W (1990) Brain stem projections to the telencephalon in two species of amphibians, Triturus alpestris (Urodela) and Ichthyophis kohtaoensis (Gymnophiona). Exp Brain Res Series 19:43–55

    Google Scholar 

  • Wiggers W, Roth G (1991) Anatomy, neurophysiology and functional aspects of the nucleus isthmi in salamanders of the family Plethodontidae. J Comp Physiol A 169:165–176

    Google Scholar 

  • Wiggers W, Roth G, Eurich C, Straub A (1995) Binocular depth perception mechanisms in tongue-projecting salamanders. J Comp Physiol A 176:365–377

    Google Scholar 

  • Wigston D (1986) Selective innervation of transplanted limb muscles by regenerating motor axons in the axolotl. J Neurosci 6:2757–2763

    CAS  PubMed  Google Scholar 

  • Wigston D, Kennedy PR (1987) Selective innervation of transplanted muscles by their original motoneurons in the axolotl. J Neurosci 7:1857–1865

    CAS  PubMed  Google Scholar 

  • Wilczynski W, Northcutt RG (1977) Afferents to the optic tectum of the leopard frog: an HRP study. J Comp Neurol 173:219–230

    Google Scholar 

  • Wilczynski W, Northcutt RG (1983a) Connections of the bullfrog striatum: afferent organization. J Comp Neurol 214:321–332

    CAS  PubMed  Google Scholar 

  • Wilczynski W, Northcutt RG (1983b) Connections of the bullfrog striatum: efferent projections. J Comp Neurol 214:333–343

    CAS  PubMed  Google Scholar 

  • Will U (1986) Mauthner neurons survive metamorphosis in anurans: a comparative HRP study on the cy to architecture of Mauthner neurons in amphibians. J Comp Neurol 244:111–120

    CAS  PubMed  Google Scholar 

  • Will U (1988) Organization and projections of the area octavolateralis in amphibians. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The evolution of the amphibian auditory system. Wiley, New York, pp 185–208

    Google Scholar 

  • Will U (1989) Central mechanosensory lateral line system in amphibians. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer-Verlag, Berlin Heidelberg New York, pp 365–386

    Google Scholar 

  • Will U (1991) Amphibian Mauthner cells. Brain Behav Evol 37:317–332

    CAS  PubMed  Google Scholar 

  • Will U, Fritzsch B (1988) The eighth nerve in amphibians. Peripheral and central distribution. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The evolution of the amphibian auditory system. Wiley, New York, pp 159–183

    Google Scholar 

  • Wingstrand KG (1966) Comparative anatomy and evolution of the hypophysis. In: Harris GW, Donovan BT (eds) The pituitary gland, vol 1. Butterworths, London, pp 58–126

    Google Scholar 

  • Winkelmann E, Marx I (1969) Experimentelle Untersuchungen über die mikroskopischen und submikroskopischen Veränderungen im Telencephalon von Ambystoma mexicanum nach Resektion des Riechorgans. Z Mikrosk-Anat Forsch 81:71–95

    CAS  PubMed  Google Scholar 

  • Winkelmann E, Winkelmann A (1970) Experimentelle Untersuchungen zur Regeneration des Telencephalon von Ambystoma mexicanum nach Resektion beider Hemisphären. Z Mikrosk-Anat Forsch 82:149–171

    CAS  PubMed  Google Scholar 

  • Wirsig CR, Getchell TV (1986) Amphibian terminal nerve: distribution revealed by LHRH and AChE markers. Brain Res 385:10–21

    CAS  PubMed  Google Scholar 

  • Wolters JG, ten Donkelaar HJ, Verhofstad AAJ (1984) Distribution of catecholamines in the brain stem and spinal cord of the lizard Varanus exanthematicus: an immunohistochemical study based on the use of antibodies to tyrosine hydroxylase. Neuroscience 13:469–493

    CAS  PubMed  Google Scholar 

  • Woodburne RT (1936) A phylogenetic consideration of the primary and secondary centers and connections of the trigeminal complex in a series of vertebrates. J Comp Neurol 65:403–501

    Google Scholar 

  • Wright MR (1951) The lateral-line system of sense organs. Quart Rev Biol 26:264–280

    CAS  PubMed  Google Scholar 

  • Yang J, Roper SD (1987) Dye-coupling in taste buds in the mudpuppy, Necturus maculosus. J Neurosci 7:3561–3565

    CAS  PubMed  Google Scholar 

  • Young BW, Keller RE, Malacinski GM (1980) An atlas of notochord and somite morphogenesis in several anuran and urodelean amphibians. J Embryol Exp Morphol 59:223–247

    Google Scholar 

  • Young JZ (1981) The life of vertebrates. 3rd edn. Clarendon, Oxford

    Google Scholar 

  • Youngstrom KA (1940) A primary and a secondary somatic motor innervation in Ambystoma. J Comp Neurol 73:139–151

    Google Scholar 

  • Zamora AJ (1978) The ependymal and glial configuration in the spinal cord of urodeles. Anat Embryol 154:67–82

    CAS  PubMed  Google Scholar 

  • Zamora AJ, Mutin M (1988) Vimentin and glial fibrillary acidic protein filaments in radial glia of the adult urodele spinal cord. Neuroscience 27:279–288

    CAS  PubMed  Google Scholar 

  • Zittlau KE, Bartels M, Münz H (1988) Representation of octavolateralis systems in the brainstem of Ambystoma mexicanum. In: Eisner N, Barth FG (eds) Sense organs. Interfaces between environment and behaviour. Thieme, Stuttgart, p 165

    Google Scholar 

Download references

Authors

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

ten Donkelaar, H.J. (1998). Urodeles. In: The Central Nervous System of Vertebrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18262-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18262-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62127-7

  • Online ISBN: 978-3-642-18262-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics