Skip to main content

Abstract

The bony fishes, or Osteichthys, constitute by far the largest class of extant vertebrates, encompassing more than 25 000 species. The great majority of these species belong in the large subclass Actino-pterygii, or ray-finned fishes. However, the Oste-ichthyes encompass three other subclasses: the Brachiopterygii, or arm-finned fishes (also designated as Cladistia); the Dipnoi, or lungfishes; and the Crossopterygii, or tassel-finned fishes. Although each of these three subclasses includes only a limited number of species, these are of great zoological and evolutionary interest. In this chapter, we focus on the Brachiopterygii, which contain the single family Polypteridae, with two genera: Polypterus and Erpetoichthys (previously indicated as Calamoichthys). The genus Polypterus, the bichirs, comprises ten species, all with an elongated body and a similar appearance. The other genus consists of a single species, the reedfish Erpetoichthys calabaricus. The body of the reedfish is eel-shaped (Fig. 13.1), but it is otherwise similar to the bichirs morphologically and ecologically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ariëns Kappers J (1965) Survey of the innervation of the epiphysis cerebri and the accessory pineal organs of vertebrates. Prog Brain Res 10:87–153

    Article  Google Scholar 

  • Bachmann K (1972) The nuclear DNA of Polypterus palmas. Copeia 2:363–365

    Article  Google Scholar 

  • Barry MA (1987) Afferent and efferent connections of the primary octaval nuclei in the clearnose skate, Raja eglanteria. J Comp Neurol 266:457–477

    Article  CAS  PubMed  Google Scholar 

  • Berg LS (1958) System der Rezenten und Fossilen Fischartigen und Fische. Deutscher Verlag der Wissenschaften, Berlin

    Google Scholar 

  • Bergquist H (1932) Zur Morphologie des Zwischenhirns bei niederen Wirbeltieren. Acta Zool 13:57–304

    Article  Google Scholar 

  • Bergquist H, Källén B (1954) Notes on the early histogenesis and morphogenesis of the central nervous system in vertebrates. J Comp Neurol 100:627–659

    Article  CAS  PubMed  Google Scholar 

  • Bern HA (1969) Urophysis and caudal neurosecretory system. In: Hoar WS, Randall DJ (eds) Fish physiology, vol II. Academic, New York, pp 399–418

    Google Scholar 

  • Bjerring HC (1985) Facts and thoughts on piscine phylogeny. In: Foreman RE, Gorbman A, Dodd JM, Olsson R (eds) Evolutionary biology of primitive fishes. Plenum, New York, pp 31–57

    Chapter  Google Scholar 

  • Boord RL, Northcutt RG (1982) Ascending lateral line pathways to the midbrain of the clearnose skate, Raja eglanteria. J Comp Neurol 207:274–282

    Article  CAS  PubMed  Google Scholar 

  • Boord RL, Northcutt RG (1988) Medullary and mesencephalic pathways and connections of lateral line neurons of the spiny dogfish Squalus acanthias. Brain Behav Evol 32:76–88

    Article  CAS  PubMed  Google Scholar 

  • Braford MR Jr, McCormick CA (1979) Some connections of the torus semicircularis in the bowfin, Amia calva: a horseradish peroxidase study. Soc Neurosci Abstr 5:139

    Google Scholar 

  • Braford MR Jr, Northcutt RG (1974) Olfactory bulb projections in the bichir, Polypterus. J Comp Neurol 156:165–178

    Article  PubMed  Google Scholar 

  • Braford MR Jr, Northcutt RG (1978) Correlation of telencephalic afferents and SDH distribution in the bony fish Polypterus. Brain Res 152:157–160

    Article  PubMed  Google Scholar 

  • Braford MR Jr, Northcutt RG (1983) Organization of the diencephalon and pretectum in ray-finned fishes. In: Davis RE, Northcutt RG (eds) Fish neurobiology. 2. Higher brain areas and functions. University of Michigan Press, Ann Arbor, pp 117–164

    Google Scholar 

  • Daget J (1958) Sous-classe des brachioptérygiens. Traite Zool 13:2500–2521

    Google Scholar 

  • Denton TE, Howell WM (1973) Chromosomes of the African polypterid fishes, Polypterus palmas and Calamoichtys calabaricus (Pisces: Brachiopterygii). Experientia 29:122–124

    Article  Google Scholar 

  • Echteier SM (1974) Connections of the auditory midbrain in a teleost fish, Cyprinus carpio. J Comp Neurol 230:536–551

    Article  Google Scholar 

  • Fasolo A, Mazzi V, Franzoni MF (1978) A Golgi study of the hypothalamus of Actinopterygii. II. The posterior hypothalamus. Cell Tissue Res 191:433–447

    Article  CAS  PubMed  Google Scholar 

  • Finger TE (1983) The gustatory system in teleost fish. In: Northcutt RG, Davis RE (eds) Fish neurobiology. 1. Brain stem and sense organs. University of Michigan Press, Ann Arbor, pp 285–310

    Google Scholar 

  • Gardiner BG (1967) Further notes on paleoniscoid fishes with a classification of the Chondrostei. Bull Brit Mus Nat Hist (Geol) 14:143–206

    Google Scholar 

  • Goodrich ES (1907) On the scales offish, living and extinct, and their importance in classification. Proc Zool Soc Lond: 751-774

    Google Scholar 

  • Goodrich ES (1928) Polypterus, a palaeoniscid? Palaeobiology 1:87–91

    Google Scholar 

  • Hocke Hoogenboom KJ (1929) Das Gehirn von Polyodon folium Lacép. Z Mikrosk Anat Forsch 18:311–392

    Google Scholar 

  • Holmes RL, Ball JN (1974) The pituitary gland: a comparative account. Cambridge University Press, Cambridge

    Google Scholar 

  • Holmes PH, Northcutt RG (1995) Afferent and efferent connections of the nonolfactory pallium in the Senegal bichir, Polypterus senegalus (Ostheichtyes: Cladistia). Soc Neurosci Abstr 21:432

    Google Scholar 

  • Holmgren N (1922) Points of view concerning forebrain morphology in lower vertebrates. J Comp Neurol 34:391–440

    Article  Google Scholar 

  • Huxley TH (1861) Preliminary essay upon the systematic arrangement of the fishes of the devonian epoch. Mem Geol Surv UK Decade 10:1–40

    Google Scholar 

  • Jarvik E (1947) Notes on the pit-lines and dermal bones of the head in Polypterus. Zool Bidrag Upssala 25:60–78

    Google Scholar 

  • Jarvik E (1968) Aspects of vertebrate physiology. In: Ørvig T (ed) Current problems of lower vertebrate phylogeny. Fourth Nobel Symposium. Almqvist and Wiksell, Stockholm, pp 497–527

    Google Scholar 

  • Jeener R (1930) Evolution des centres diencéphaliques périventriculaires des Téléostomes. Proc Kon Ned Akad B 33:1–16

    Google Scholar 

  • Johnston JB (1911) The telencephalon of ganoids and teleosts. J Comp Neurol 21:489–591

    Article  Google Scholar 

  • Kalmijn AJ (1978) Electric and magnetic sensory world of sharks, skates and rays. In: Hodgson ES, Mathewson RF (eds) Sensory biology of sharks, skates and rays. US Government Printing Office, Washington DC, pp 507–528

    Google Scholar 

  • Kenemans P (1980) On the structural plan of the brain stem. Thesis, Nijmegen

    Google Scholar 

  • Kerr T (1968) The pituitary in Polypterines and its relationship to other fish pituitaries. J Morphol 124:23–36

    Article  CAS  PubMed  Google Scholar 

  • Lagios MD (1968) Tetrapod-like organization of the pituitary gland of the polypteriformid fishes, Calamoichthys calabaricus and Polypterus palmas. Gen Comp Endocrinol 11:300–315

    Article  CAS  PubMed  Google Scholar 

  • Larsell O (1967) The comparative anatomy and histology of the cerebellum from myxinoids through birds. University of Minnesota Press, Minneapolis

    Google Scholar 

  • Lauder GV, Liem KF (1983a) Patterns of diversity and evolution in ray-finned fishes. In: Northcutt RG, Davis RE (eds) Fish neurobiology. 1. Brainstem and sense organs. University of Michigan Press, Ann Arbor, pp 1–24

    Google Scholar 

  • Lauder GV, Liem KF (1983b) The evolution and interrelationships of the actinopterygian fishes. Bull Mus Comp Zool 150:95–197

    Google Scholar 

  • Le HLV, Lecointre G, Perasso R (1993) A 28S rRNA-based phylogeny of the Gnathostomes: first steps in the analysis of conflict and congruence with morphologically based cladograms. Mol Phylogen Evol 2:31–51

    Article  CAS  Google Scholar 

  • Masino T, Grobstein P (1990) Tectal connectivity in the frog Rana pipiens: tectotegmental projections and a general analysis of topographic organization. J Comp Neurol 291:103–127

    Article  CAS  PubMed  Google Scholar 

  • Matthieu J-M, Eschmann N, Bürgisser P, Malotka J, Waehneldt TV (1986) Expression of the myelin proteins characteristic of fish and tetrapods by Polypterus revitalizes long discredited phylogenetic links. Brain Res 379:137–142

    Article  CAS  PubMed  Google Scholar 

  • Mazzi V, Fasolo A, Franzoni MF (1977) The optic tectum of Calamoichthys calabaricus Smithi. A Golgi study. Cell Tissue Res 182:491–503

    Article  CAS  PubMed  Google Scholar 

  • Mazzi V, Franzoni MF, Fasolo A (1978) A Golgi study of the hypothalamus of Actinopterygii. I. The preoptic area. Cell Tissue Res 186:475–490

    Article  CAS  PubMed  Google Scholar 

  • McCormick CA (1978) Central projections of the lateralis and eighth nerves in the bowfin, Amia calva. Thesis, University of Michigan

    Google Scholar 

  • McCormick CA (1981) Central projections of the lateral line and eighth nerves in the bowfin, Amia calva. J Comp Neurol 197:1–15

    Article  CAS  PubMed  Google Scholar 

  • McCormick CA (1982) The organization of the octavolateralis area in actinopterygian fishes: a new interpretation. J Morphol 171:159–181

    Article  Google Scholar 

  • Morita Y, Ito H, Masai H (1980) Central gustatory paths in the crucian carp, Carassius carassius. J Comp Neurol 191:119–132

    Article  CAS  PubMed  Google Scholar 

  • Morita Y, Murakami T, Ito H (1983) Cytoarchitecture and topographic projections of the gustatory centers in a teleost, Carassius carassius. J Comp Neurol 218:378–394

    Article  CAS  PubMed  Google Scholar 

  • Moy-Thomas JA, Miles RS (1971) Palaeozoic fishes. Chapman and Hall, London

    Book  Google Scholar 

  • Neary TJ (1974) Diencephalic efferents of the torus semicircularis in the bullfrog, Rana catesbeiana. Anat Rec 178:425

    Google Scholar 

  • Nelson GJ (1969) Origin and diversification of teleostean fishes. In: Petras JM, Noback CR (eds) Comparative and evolutionary aspects of the vertebrate central nervous system. Ann NY Acad Sci 167:18-30

    Google Scholar 

  • Nieuwenhuys R (1962) Trends in the evolution of the Actinopterygian forebrain. J Morphol 111:69–88

    Article  CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1963) The comparative anatomy of the Actinopterygian forebrain. J Hirnforsch 6:171–192

    Google Scholar 

  • Nieuwenhuys R (1966) The interpretation of the cell masses in the teleostean forebrain. In: Hassler R, Stephan H (eds) Evolution of the forebrain. Thieme, Stuttgart, pp 32–39

    Chapter  Google Scholar 

  • Nieuwenhuys R (1967a) Comparative anatomy of the cerebellum. Prog Brain Res 25:1–93

    Article  CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1967b) Comparative anatomy of olfactory centres and tracts. Prog Brain Res 23:1–64

    Article  CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1969) A survey of the structure of the forebrain in higher bony fishes. Ann NY Acad Sci 167:31–64

    Article  Google Scholar 

  • Nieuwenhuys R (1983) The central nervous system of the Brachiopterygian fish Erpetoichthys calabaricus. J Hirnforsch 24:501–533

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R, Bodenheimer TS (1966) The diencephalon of the primitive bony fish Polypterus in the light of the problem of homology. J Morphol 118:415–450

    Article  CAS  PubMed  Google Scholar 

  • Nieuwenhuys R, Oey PL (1983) Topological analysis of the brain stem of the reedfish, Erpetoichthys calabaricus. J Comp Neurol 213:220–232

    Article  CAS  PubMed  Google Scholar 

  • Nieuwenhuys R, Bauchot R, Arnoult J (1969) Le dévelopement de télencéphale d’un poisson osseux primitif, Polypterus senegalus Cuvier. Acta Zool 50:101–125

    Article  Google Scholar 

  • Northcutt RG (1981) Localization of neurons afferent to the telencephalon in a primitive bony fish, Polypterus palmas. Neurosci Lett 22:219–222

    Article  Google Scholar 

  • Northcutt RG (1983) Evolution of the optic tectum in ray-finned fishes. In: Davis RE, Northcutt RG (eds) Fish neurobiology. 2. Higher brain areas and functions. University of Michigan Press, Ann Arbor, pp 1–42

    Google Scholar 

  • Northcutt RG (1995) The forebrain of Gnathostomes: In search of a morphotype. Brain Behav Evol 46:275–318

    Article  CAS  PubMed  Google Scholar 

  • Northcutt RG, Braford MR Jr (1980) New observations on the organization and evolution of the telencephalon of actinopterygian fishes. In: Ebbesson SOE (ed) Comparative neurology of the telencephalon. Plenum, New York, pp 41–98

    Chapter  Google Scholar 

  • Northcutt RG, Butler AB (1980) Projections of the optic tectum in the longnose gar, Lepisosteus osseus. Brain Res 190:333–346

    Article  CAS  PubMed  Google Scholar 

  • Northcutt RG, Reiner A, Karten HJ (1988) An immunohistochemical study of the telencephalon of the spiny dogfish, Squalus acanthias. J Comp Neurol 227:250–267

    Article  Google Scholar 

  • Onstott D, Elde R (1986) Immunohistochemical localization of urotensin I/corticotropin-releasing factor, urotensin II, and serotonin immunoreactivities in the caudal spinal cord of nonteleost fishes. J Comp Neurol 249:205–225

    Article  CAS  PubMed  Google Scholar 

  • Patterson C (1982) Morphology and interrelationships of primitive actinopterygian fishes. Am Zool 22:241–259

    Google Scholar 

  • Patterson C (1994) Bony fishes In: Prothero DR, Schoch RM (eds) Short courses in paleontology, no 7. Paleontological Society, Knoxville, Tennessee, pp 57–84

    Google Scholar 

  • Pinuela C, Northcutt RG (1995) Dopamine distribution in the forebrain of the Senegal bichir. Soc Neurosci Abstr 21:432

    Google Scholar 

  • Platel R, Ridet J-M, Bauchot R, Diagne M (1977) L’organisation encéphalique chez Amia, Lepisosteus et Polypterus: Morphologie et analyse quantitative comparées. J Hirnforsch 18:69–73

    CAS  PubMed  Google Scholar 

  • Poll M (1965) Anatomie et systematique des Polypteres. Bull Acad R Belg Cl (5 ser) 51:553–569

    Google Scholar 

  • Reiner A, Northcutt RG (1987) An immunohistochemical study of the telencephalon of the African lungfish. J Comp Neurol 256:463–481

    Article  CAS  PubMed  Google Scholar 

  • Reiner A, Northcutt RG (1992) An immunohistochemical study of the telencephalon of the Senegal bichir (Polypterus senegalus). J Comp Neurol 319:359–386

    Article  CAS  PubMed  Google Scholar 

  • Repérant J, Rio J-P, Amouzou M (1979) Analyse radioautographique des projections rétiniennes chez le Poisson osseux primitif Polypterus senegalus. CR Acad Sci [Paris] 289:D947–D950

    Google Scholar 

  • Repérant J, Rio J-P, Miceli D, Amouzou M, Peyrichoux J (1981) The retinofugal pathways in the primitive african bony fish Polypterus senegalus (Cuvier 1829). Brain Res 217:225–243

    Article  PubMed  Google Scholar 

  • Roth A (1973) Electroreceptors in Brachiopterygii and Dipnoi. Naturwissenschaften 2:S106

    Article  Google Scholar 

  • Roth A, Tscharntke H (1976) Ultrastructure of the ampullary electroreceptors in lungfish and brachiopterygii. Cell Tissue Res 173:95–108

    Article  CAS  PubMed  Google Scholar 

  • Sawyer WH (1969) The active neurohypophysial principles of two primitive bony fishes, the bichir (Polypterus senegalis) and the African lungfish (Protopterus aethiopicus). J Endocrinol 44:421–435

    Article  CAS  PubMed  Google Scholar 

  • Schnitzlein HN (1962) The habenula and the dorsal thalamus of some teleosts. J Comp Neurol 118:225–268

    Article  CAS  PubMed  Google Scholar 

  • Senn DG (1976a) Brain structure in Calamoichthys calabaricus Smith 1865 (Polypteridae, Brachiopterygii). Acta Zool 57:121–128

    Article  Google Scholar 

  • Senn DG (1976b) Notes on the midbrain and forebrain of Calamoichthys calabaricus Smith 1865 (Polypteridae, Brachiopterygii). Acta Zool 57:129–135

    Article  Google Scholar 

  • Sheldon RE (1912) The olfactory tracts and centres in teleosts. J Comp Neurol 22:178–337

    Article  Google Scholar 

  • Smeets WJAJ (1981) Efferent tectal pathways in two chondrichthyans, the shark Scyliorhinus canicula and the ray Raja clavata. J Comp Neurol 195:13–23

    Article  CAS  PubMed  Google Scholar 

  • Smeets WJAJ, Boord RL (1985) Connections of the lobus inferior hypothalami of the clear nose skate Raja eglanteria (Chondrichthyes). J Comp Neurol 234:380–392

    Article  CAS  PubMed  Google Scholar 

  • Stensiö EA (1921) Triassic Fishes from Spitzbergen, part I. Holzhausen, Vienna

    Google Scholar 

  • Striedter GF (1991) Auditory, electrosensory and mechanosensory lateral line pathways through the forebrain of channel catfishes. J Comp Neurol 312:311–331

    Article  CAS  PubMed  Google Scholar 

  • van der Horst CJ (1919) Das Kleinhirn der Crossopterygii. Bijdr Dierk Kon Zool Gen Nat Artis Mag 21:113–118

    Google Scholar 

  • van der Horst CJ (1925) The cerebellum of fishes. I. General morphology of the cerebellum. Proc R Neth Acad Sci [Amsterdam] 28:735–746

    Google Scholar 

  • von Bartheld CS, Meyer DL (1986a) Central projections of the nervus terminalis in the bichir, Polypterus palmas. Cell Tissue Res 244:181–186

    Google Scholar 

  • von Bartheld CS, Meyer DL (1986b) Central connections of the olfactory bulb in the bichir, Polypterus palmas, reexamined. Cell Tissue Res 244:527–535

    Google Scholar 

  • von Bartheld CS, Meyer DL (1988) Central projections of the nervus terminalis in lampreys, lungfishes, and bichirs. Brain Behav Evol 32:151–159

    Article  Google Scholar 

  • Waldschmidt J (1887) Beiträge zur Anatomie des Zentralnervensystems und des Geruchsorgans von Polypterus bichir. Anat Anz 2:308–322

    Google Scholar 

  • Wullimann MF (1988) The tertiary gustatory center in sunfishes is not nucleus glomerulosus. Neurosci Lett 86:6–10

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nieuwenhuys, R. (1998). Brachiopterygian Fishes. In: The Central Nervous System of Vertebrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18262-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18262-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62127-7

  • Online ISBN: 978-3-642-18262-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics