Skip to main content

Microalgae as a Feedstock for Biofuels

  • Chapter
  • First Online:
Microalgae as a Feedstock for Biofuels

Part of the book series: SpringerBriefs in Microbiology ((BRIEFSMICROBIOL))

Abstract

This review explains the potential use of the so-called “green coal” for biofuel production. A comparison between microalgae and other crops is given, and their advantages are highlighted. The production of biofuels from microalgae biomass is described, such as the use of algae extracts (e.g. biodiesel from oil, bioethanol from starch), processing the whole biomass (e.g. biogas from anaerobic digestion, supercritical fluid, bio-oil by pyrolysis, syngas by gasification, biohydrogen, jet fuel), as well as the direct production (e.g. alcohols, alkanes). Microalgal biomass production systems are also mentioned, including production rates and production/processing costs. Algae cultivation strategy and the main culture parameters are point out as well as biomass harvesting technologies and cell disruption. The CO2 sequestration is emphasised due to it’s undoubted interest in cleaning our earth. Life cycle analysis is also discussed. The algal biorefinery strategy, which can integrate several different conversion technologies to produce biofuel is highlighted for a cost-effective and environmentally sustainable production of biofuels. The author explains some of the challenges that need to be overcome to ensure the viability of biofuel production from microalgae. This includes the author’s own research, the use of microorganism fuel cells, genetic modification of microalgae, the use of alternative energies for biomass production, dewatering, drying and processing. The conclusion of the manuscript is the author’s view on the potential of microalgae to produce biofuels; the drawbacks and what should be done in terms of research to solve them; which technologies seem to be more viable to produce energy from algae; and which improvements in terms of microalgae, systems, and technologies should take place to enable the algae to fuels concept a reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Khader M (2006) Recent progress in CO2 capture/sequestration: a review. Energy Sources 28:1261–1279

    CAS  Google Scholar 

  • Agrawal R, Singh NR, Ribeiro FH, Delgass WN (2007) Sustainable fuel for the transportation sector. Proc Natl Acad Sci U S A 104:4828–4833

    Google Scholar 

  • Alfafara CG, Nakano K, Nomura N, Igarashi T, Matsumura M (2002) Operating and scale-up factors for the electrolytic removal of algae from eutrophied lake water. J Chem Technol Biot 77:871–876

    CAS  Google Scholar 

  • Al-Widyan MI, Al-Shyoukh AO (2002) Experimental evaluation of the transesterification of waste palm oil into biodiesel. Bioresour Technol 85:253–256

    CAS  PubMed  Google Scholar 

  • Amin S (2009) Review on biofuel oil and gas production process from microalgae. Energy Convers Manag 50:1834–1840

    CAS  Google Scholar 

  • Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Rosa D-E (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22:477–485

    CAS  PubMed  Google Scholar 

  • Antolin G, Tinaut FV, Briceno Y, Castano V, Perez C, Ramirez AI (2002) Optimization of biodiesel production by sunflower oil transesterification. Bioresour Technol 83:111–114

    CAS  PubMed  Google Scholar 

  • Azarian GH, Mesdaghinia AR, Vaezi F, Nabizadeh R, Nematollahi D (2007) Algae removal by electro-coagulation process, application for treatment of the effluent from an industrial wastewater treatment plant. Iran J Public Health 36:57–64

    CAS  Google Scholar 

  • Balat M (2005) Current alternative engine fuels. Energy Sources 27:569–577

    CAS  Google Scholar 

  • Balat M (2009) Possible methods for hydrogen production. Energy Sources 21:39–50

    Google Scholar 

  • Barbosa MJGV (2003) Microalgal photobioreactors: scale-up and optimisation. Ph.D. thesis. Wageningen University, The Netherlands

    Google Scholar 

  • Barbosa B, Jansen M, Ham N (2003a) Microalgae cultivation in air-lift reactors: modeling biomass yield and growth rate as a function of mixing frequency. Biotechnol Bioeng 82:170–179

    CAS  PubMed  Google Scholar 

  • Barbosa B, Albrecht M, Wijffels R (2003b) Hydrodynamic stress and lethal events in sparged microalgae cultures. Biotechnol Bioeng 83:112–120

    CAS  PubMed  Google Scholar 

  • Barbosa B, Hadiyanto M, Wijffels R (2004) Overcoming shear stress of microalgae cultures in sparged photobioreactors. Biotechnol Bioeng 85:78–85

    CAS  PubMed  Google Scholar 

  • BBC (2009) First flight of algae-fuelled jet. Available at http://news.bbc.co.uk/2/hi/science/nature

  • Becker EW (1994) Oil production. In: Carey NH, Higgins IJ, Potter WG (eds) Sir J Baddiley. biotechnology and microbiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Benemann JR (2003) Biofixation of CO2 and greenhouse gas abatement with microalgae-technology roadmap. Final report submitted to the US Department of Energy, National Energy Technology Laboratory

    Google Scholar 

  • Benemann J, Oswald W (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. Final report to the US Department of Energy. Pittsburgh Energy Technology Center

    Google Scholar 

  • Benli H, Durmus A (2009) Evaluation of ground-source heat pump combined latent heat storage system performance in greenhouse heating. Energy Build 41:220–228

    Google Scholar 

  • Bertling K, Hurse TJ, Kappler U, Rakic AD (2006) Lasers—an effective artificial source of radiation for the cultivation of anoxygenic photosynthetic bacteria. Biotechnol Bioeng 94:337–345

    CAS  PubMed  Google Scholar 

  • Bilanovic D, Shelef G, Sukenik A (1988) Flocculation of microalgae with cationic polymers—effects of medium salinity. Biomass 17:65–76

    CAS  Google Scholar 

  • Biller P, Ross AB (2011) Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol 102:215–225

    CAS  PubMed  Google Scholar 

  • Boichenko VA, Hoffmann P (1994) Photosynthetic hydrogen-production in prokaryotes and eukaryotes—occurrence, mechanism, and functions. Photosynthetica 30:527–552

    CAS  Google Scholar 

  • Boichenko VA, Greenbaum E, Seibert M (2004) Hydrogen production by photosynthetic microorganisms. In: MDA, Barber J (eds) Photoconversion of solar energy, molecular to global photosynthesis, vol 2. Imperial College Press, London, pp 397–452

    Google Scholar 

  • BP statistics (2009) http://www.bp.com/statisticalreview

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    CAS  Google Scholar 

  • Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30:1479–1493

    CAS  Google Scholar 

  • Brown LR (2006) Beyond the oil peak. In: Brown LR (ed) Plan B 2.0 rescuing a planet under stress and a civilization in trouble. W.W. Norton & Co., New York, pp 21–40

    Google Scholar 

  • Brown MR, Dunstan GA, Norwood SJ, Miller KA (1996a) Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana. J Phycol 32:64–73

    CAS  Google Scholar 

  • Brown MR, Barrett SM, Volkman JK, Nearhos SP, Nell JA, Allan GL (1996b) Biochemical composition of new yeasts and bacteria evaluated as food for bivalve aquaculture. Aquaculture 143:341–360

    CAS  Google Scholar 

  • Camacho Rubio F, Garcıa Camacho F, Fernandez Sevilla JM, Chisti Y, Molina Grima E (2003) A mechanistic model of photosynthesis in microalgae. Biotechnol Bioeng 81:459–473

    CAS  PubMed  Google Scholar 

  • Campbell CJ (1997) The coming oil crisis. Multi-science Publishing Company and Petroconsultants, S.A Essex

    Google Scholar 

  • Campbell PK, Beer T, Batten D (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102:50–56

    CAS  PubMed  Google Scholar 

  • Cantrell KB, Ducey T, Ro KS, Hunt PG (2008) Livestock waste-to-bioenergy generation opportunities. Bioresour Technol 99:7941–7953

    CAS  PubMed  Google Scholar 

  • Carlberg JM, van Olst JC, Massingill MJ, Chamberlain RJ (2002) Aquaculture wastewater treatment system and method of making same. Kent Seatech: US Patent 6,447,681, 10 Sept 2002

    Google Scholar 

  • Carlsson AS, van Beilen JB, Moller R, Clayton D (2007) Micro- and macro-algae utility for industrial applications. In: Dianna B (ed) Outputs from the EPOBIO project. CPL press, UK

    Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506

    CAS  PubMed  Google Scholar 

  • Cerón MC, Campos I, Sánchez JF, Acién FG, Molina Grima E, Fernandez-Sevilla JM (2008) Recovery of lutein from microalgae biomass: development of a process for Scenedesmus almeriensis biomass. J Agric Food Chem 56:11761–11766

    PubMed  Google Scholar 

  • Chelf P, Brown LM, Wyman CE (1993) Aquatic biomass resources and carbon dioxide trapping. Biomass Bioenergy 4:175–183

    CAS  Google Scholar 

  • Chen YM, Liu JC, Ju YH (1998) Flotation removal of algae from water. Colloid Surf B 12:49–55

    CAS  Google Scholar 

  • Chen P, Min M, Chen Y, Wang L, Li Y, Chen Q, Wang C, Wan Y, Wang X, Cheng Y, Deng S, Hennessy K, Lin X, Liu Y, Wang Y, Martinez B, Ruan R (2009) Review of the biological and engineering aspects of algae to fuels approach. Int J Agric Biol Eng 2:1–30

    Google Scholar 

  • Chen C-Y, Yeh Ki L, Aisyah R, Lee D-J, Chang J-S (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81

    CAS  PubMed  Google Scholar 

  • Cheryl (2010) Algae becoming the new biofuel of choice. Available online 2008. http://duelingfuels.com/biofuels/non-food-biofuels/algae-biofuel.php#more-115N

  • Chi ZY, Pyle D, Wen ZY, Frear C, Chen SL (2007) A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem 42:1537–1545

    CAS  Google Scholar 

  • Chiaramonti D, Oasmaa A, Solantausta Y (2007) Power generation using fast pyrolysis liquids from biomass. Renew Sust Energ Rev 11:1056–1086

    CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Claxton R, Das K (2010a) Biomass and bioenergy production potential of microalgae consortium in open and closed bioreactors using untreated carpet industry effluent as growth medium. Bioresour Technol 101:6751–6760

    CAS  PubMed  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das K (2010b) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101:3097–3105

    CAS  PubMed  Google Scholar 

  • Chisti Y (2006) Microalgae as sustainable cell factories. Environ Eng Manag J 53:261–274

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    CAS  PubMed  Google Scholar 

  • Chisti Y (2008a) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    CAS  PubMed  Google Scholar 

  • Chisti Y (2008b) Response to Reijnders: do biofuels from microalgae beat biofuels from terrestrial plants. Trends Biotechnol 26:351–352

    CAS  Google Scholar 

  • Chisti Y (2009) Biodiesel from microalgae. Seminario Internacional de Biocombustibles de Algas. Antofagasta, Chile, 7–8 October

    Google Scholar 

  • Chisti Y (2010) Fuels from microalgae. Biofuels 1:233–235

    CAS  Google Scholar 

  • Chisti Y, Moo-young M (1986) Disruption of microbial cells for intracellular products. Enzyme Microb Technol 8:194–204

    CAS  Google Scholar 

  • Cho S, Ji SC, Hur S, Bae J, Park IS, Song YC (2007) Optimum temperature and salinity conditions for growth of green algae Chlorella ellipsoidea and Nannochloris oculata. Fish Sci 73:1050–1056

    CAS  Google Scholar 

  • Choi SK, Lee JY, Kwon DY, Cho KJ (2006) Settling characteristics of problem algae in the water treatment process. Water Sci Technol 53:113–119

    CAS  PubMed  Google Scholar 

  • Chojnacka K, Marquez-Rocha FJ (2004) Kinetic and Stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology 3:21–34

    Google Scholar 

  • Clarens AF, Resurreccion E, White M, Colosi A (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819

    CAS  PubMed  Google Scholar 

  • Clark J, Deswarte F (2008) Introduction to chemicals from biomass, Wiley Series in Renewable Resources, ISBN978-0-470-05805

    Google Scholar 

  • Collet P, Hélias-Arnaud A, Lardon L, Ras M, Goy RA, Steyer JP (2011) Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour Technol 102:207–214

    CAS  PubMed  Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151

    CAS  Google Scholar 

  • Cooney MJ, Young G, Pte R (2011) Bio-oil from photosynthetic microalgae: case study. Bioresour Technol 102:166–177

    CAS  PubMed  Google Scholar 

  • Costa JAV, Morais MG (2011) The role of biochemical engineering in the production of biofuels from microalgae. Bioresour Technol 102:2–9

    CAS  PubMed  Google Scholar 

  • Crossley IA, Valade MT, Shawcross J (2002) Using the lesson learned and advanced methods to design a 1500 Ml/day DAF water treatment plant. Water Sci Technol 43:35–41

    Google Scholar 

  • Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18:590–598

    CAS  Google Scholar 

  • Danquah MK, Ang L, Uduman N, Moheimani N, Fordea GM (2009) Dewatering of microalgal culture for biodiesel production: exploring polymer flocculation and tangential flow filtration. J Chem Technol Biot 84:1078–1083

    CAS  Google Scholar 

  • Das D (2009) Advances in biological hydrogen production processes: an approach towards commercialization. Int J Hydrogen Energ 34:7349–7357

    CAS  Google Scholar 

  • de Morais MG, Costa JAV (2007) Biofixation of carbon dioxide by Spirulina sp and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129:439–445

    PubMed  Google Scholar 

  • deB Richter JrD, Jenkins JH, Karakash JT, Knight J, McCreery LR, Nemestothy KP (2009) Wood energy in America. Science 323:1432–1433

    Google Scholar 

  • Dermibas A (2006) Oily products from mosses and algae via pyrolysis. Energy Sources 28:933–940

    Google Scholar 

  • Demirbas A (2007) Thermal degradation of fatty acids in biodiesel production by supercritical methanol. Energy Explor Exploit 25:63–70

    CAS  Google Scholar 

  • Demirbas A (2009a) Production of biodiesel from algae oils. Energy Sour Part A Recovery, Utilization Environ Effects 31:163–168

    CAS  Google Scholar 

  • Demirbas A (2009b) Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Convers Manag 50:923–927

    CAS  Google Scholar 

  • Dickinson J, Jackson T, Matthews M, Cripps A (2009) The economic and environmental optimisation of integrating ground source energy systems into buildings. Energy 34:2215–2222

    CAS  Google Scholar 

  • Divakaran R, Pillai VNS (2002) Flocculation of algae using chitosan. J Appl Phycol 14:419–422. doi:10.1021/es902405a

    CAS  Google Scholar 

  • Dote Y, Sawayama S, Inoue S, Minowa T, Yokoyama SY (1994) Recovery of liquid fuel from hydrocarbon rich microalgae by thermochemical liquefaction. Fuel 73:1855–1857

    CAS  Google Scholar 

  • Doucha J, Straka F, Líıvanský (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412

    Google Scholar 

  • Douskova I, Doucha J, Machat J, Novak P, Umysova D, Vitova M, Zachleder V (2008) Microalgae as a means for converting flue gas CO2 into biomass with a high content of starch. Bioenergy: challenges and opportunities international conference and exhibition on bioenergy. Guimarães, Portugal, April 6th–9th

    Google Scholar 

  • Drapcho CM, Nhuan NP, Walker TH (2008) Biofuels engineering process technology, Mc Graw Hill, New York

    Google Scholar 

  • Edwards M (2010) Algae World 2010. Industry survey. Report in association with the centre of management technology

    Google Scholar 

  • Edzwald JK (1993) Algae, bubbles, coagulants, and dissolved air flotation. Water Sci Technol 27:67–81

    CAS  Google Scholar 

  • Ehimen EA, Sun ZF, Carrington CG (2010) Variables affecting the in situ transesterification of microalgae lipids. Fuel 89:677–684

    CAS  Google Scholar 

  • Encinar JM, Beltran FJ, Ramiro A, Gonzalez JF (1998) Pyrolysis/gasification of agricultural residues by carbon dioxide in the presence of different additives: influence of variables. Fuel Process Technol 55:219–233

    CAS  Google Scholar 

  • Engler CR (1993) Cell breakage. In: Harrison RG (ed) Protein purification process engineering. CRC Press, London, pp 37–55

    Google Scholar 

  • Eriksen N (2008) The technology of microalgal culturing. Biotechnol Lett 30:1525–1536

    CAS  PubMed  Google Scholar 

  • Eriksen N, Riisgard F, Gunther W (2007) On-line estimation of O2 production, CO2 uptake, and growth kinetics of microalgal cultures in a gas-tight photobioreactor. J Appl Phycol 19:161–174

    CAS  PubMed  Google Scholar 

  • FAO (2007) Food and agriculture organization of the United Nations. http://www.fao.org

  • Flynn KJ (2001) A mechanistic model for describing dynamic multi-nutrient, light, temperature interactions in phytoplankton. J Plankton Res 23:977–997

    Google Scholar 

  • Flynn KJ (2003) Modelling multi-nutrient interactions in phytoplankton; balancing simplicity and realism. Prog Oceanogr 56:249–279

    Google Scholar 

  • Flynn KJ (2008a) Use, abuse, misconceptions and insights from quota models—the droop cell quota model 40 years on. Oceanography Mar Biol Annu Rev 46:1–23

    Google Scholar 

  • Flynn KJ (2008b) The importance of the form of the quota curve and control of non-limiting nutrient transport in phytoplankton models. J Plankton Res 30:423–438

    CAS  Google Scholar 

  • Gallagher BJ (2011) The economics of producing biodiesel from algae. Renew Energy 36:158–162

    CAS  Google Scholar 

  • Gao S, Yang J, Tian J, Ma F, Tu G, Du M (2010a) Electro-coagulation–flotation process for algae removal. J Hazard Mater 177:336–343

    CAS  PubMed  Google Scholar 

  • Gao S, Du M, Tian J, Yang J, Ma F, Nan J (2010b) Effects of chloride ions on electro-coagulation–flotation process with aluminum electrodes for algae removal. J Hazard Mater 182:827–834

    CAS  PubMed  Google Scholar 

  • Ghirardi ML, Kosourov S Tsygankov A, Seibert M (2000) Two-phase photobiological algal H2-production system. In: Proceedings of the 2000 U.S. DOE hydrogen program review. National Renewable Energy Laboratory, Golden, Colorado, pp 1–13

    Google Scholar 

  • Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810

    CAS  PubMed  Google Scholar 

  • Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274

    CAS  PubMed  Google Scholar 

  • Gouveia L, Nobre BP, Marcelo FM, Mrejen S, Cardoso MT, Palavra AF, Mendes RL (2007) Functional food oil coloured by pigments extracted from microalgae with supercritical CO2. Food Chem 101:717–723

    CAS  Google Scholar 

  • Gouveia L, Marques AE, Lopes da Silva T, Reis A (2009) Neochloris oleabundans UTEX #1185: a suitable renewable lipid source for biofuel production. J Ind Microbiol Biotechnol 36:821–826

    CAS  PubMed  Google Scholar 

  • Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7:703–726

    CAS  PubMed  Google Scholar 

  • Gregoire-Padro CE (2005) Hydrogen basics. First annual international hydrogen energy implementation conference. The New Mexico Hydrogen Business Council, Santa Fe, NM

    Google Scholar 

  • Grierson S, Stezov V, Ellem G, Mcgregor R, Herbertson J (2008) Thermal characterization of microalgae under slow pyrolysis conditions. J Anal Appl Pyrol 85:118–123

    Google Scholar 

  • Gudin C, Chaumont D (1991) Cell fragility—the key problem of microalgae mass production in closed photobioreactors. Bioresour Technol 38:145–151

    Google Scholar 

  • Guerrero M (2009) Producción de Aceites a partir de Microalga. Seminario Internacional de Biocombustibles de Algas. Antofagasta, Chile, 7–8 October

    Google Scholar 

  • Hankamer B, Lehr F, Rupprecht J, Mussgnug JH, Posten C, Kruse O (2007) Photosynthetic biomass and H2 production by green algae: from bioengineering to bioreactor scale-up. Physiol Plant 131:10–21

    CAS  PubMed  Google Scholar 

  • Hansel A, Lindblad P (1998) Towards optimization of cyanobacteria as biotechnologically relevant producers of molecular hydrogen, a clean and renewable energy source. Appl Microbiol Biotechnol 50:153–160

    CAS  Google Scholar 

  • Harun R, Danquah MK (2011) Influence of acid pre-treatment on microalgal biomass for ethanol production. Process Biochem 46:304–309

    CAS  Google Scholar 

  • Harun R, Singh M, Forde GM, Danquah MK (2010a) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energ Rev 14:1037–1047

    CAS  Google Scholar 

  • Harun R, Danquah MK, Forde GM (2010b) Microbial biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85:199–203

    CAS  Google Scholar 

  • Hatti-Kaul R, Mattiasson B (2003) Release of protein from biological host. In: Hatti-Kaul R, Mattiasson B (eds) Isolation and purification of proteins. CRC, London, pp 1–28

    Google Scholar 

  • He H, Feng C, Huashou L, Wenzhou X, Yongjun L, Yue J (2010) Effect of iron on growth, biochemical composition and paralytic shellfish poisoning toxins production of Alexandrium tamarense. Harmful Algae 9:98–104

    CAS  Google Scholar 

  • Heasman M, Diemar J, O’Connor W, Sushames T, Foulkes L (2000) Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs—a summary. Aquacult Res 31:637–659

    Google Scholar 

  • Hills FJ, Johnson SS, Geng S, Abshahi A, Peterson GR (1983) Comparison of four crops for alcohol yield. Calif Agric 37:17–19

    Google Scholar 

  • Hirano A, Ryohei U, Shin H, Yasuyuki O (1997) CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22:137–142

    CAS  Google Scholar 

  • Hirano AK, Hon-Nami K, Kunito S, Hada M, Ogushi Y (1998) Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance. Catal Today 45:399–404

    CAS  Google Scholar 

  • Ho S-H, Chen W-M, Chang J-S (2010) Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour Technol 101:8725–8730

    CAS  PubMed  Google Scholar 

  • Hon-Nami K (2006) A unique feature of hydrogen recovery in endogenous starch-to-alcohol fermentation of the marine microalga. Appl Bioch Biotech 129–132:808–828

    Google Scholar 

  • Hon-Nami K, Kunito S (1998) Microalgae cultivation in a tubular bioreactor and utilization of their cells. Chin J Oceanol Limnol 16:75–83

    Google Scholar 

  • Hopkins T (1991) In: Seetharam and Sharma (eds) Purification and analysis of recombinant proteins. Marcel Dekker, New York

    Google Scholar 

  • Hsue HT, Chu H, Chang CC (2007) Identification and characteristics of a Cyanobacterium Isolated from a Hot spring with dissolved inorganic carbon. Environ Sci Technol 41:1909–1914

    Google Scholar 

  • Hu DW, Liu H, Yang CL, Hu EZ (2008a) The design and optimization for light-algae bioreactor controller based on artificial neural network-model predictive control. Acta Astronaut 63:1067–1075

    CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008b) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    CAS  PubMed  Google Scholar 

  • Huntley ME, Redalje DG (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strat Glob Change 12:573–608

    Google Scholar 

  • IEA (2006) World energy outlook 2006. International Energy Agency, Paris

    Google Scholar 

  • Iliopoulou EF, Antonakou EV, Karakoulia SA, Vasalos IA, Lappas AA, Triantafyllidis KS (2007) Catalytic conversion of biomass pyrolysis products by mesoporous materials: effect of steam stability and acidity of Al-MCM-41 catalysts. Chem Eng J 134:51–57

    Google Scholar 

  • Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 27:631–635

    CAS  PubMed  Google Scholar 

  • IPCC (2007) Intergovernmental panel on climate change ‘AR4 synthesis report’. http://www.ipcc.ch. Cited 30 Nov

  • Iwasaki I, Hu Q, Kurano N, Miyachi S (1998) Effect of extremely high-CO2 stress on energy distribution between photosystem I and photosystem II in a ‘high-CO2’ tolerant green alga, Chlorococcum littorale and the intolerant green alga Stichococcus bacillaris. J Photochem Photobiol B 44:184–190

    CAS  Google Scholar 

  • Jena U, Das KC (2009) Production of biocrude oil from microalgae via thermochemical liquefaction process. Bioenergy Engineering, Bellevue, Washington, DC, BIO-098024. American Society of Agricultural and Biological Engineers, St. Joseph, Michigan, 11–14 October

    Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM, Pandey A (2010) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol. doi:10.1016/j.biortech.2010.06.139

  • Jones KO, Clarkson N, Young A J (2002) Intelligent process modelling of a continuous algal production system. In: Dochain D, Perrier M (eds) Computer applications in biotechnology. 2001 8th IFAC international conference on computer applications in biotechnology (CAB8), pp 239–243. Pergamon, New York

    Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38:569–582

    CAS  Google Scholar 

  • Khan SA, Rashmi Hussain MZ, Prasad S, Banerjee UC (2009) Prospects of biodiesel production from microalgae in India. Renew Sust Energ Rev 13:2361–2372

    CAS  Google Scholar 

  • Kheshgi HS, Prince RC, Marland G (2000) The potential of biomass fuels in the context of global climate change. Annu Rev Energy Environ 25:199–244

    Google Scholar 

  • Khotimchenko SV, Yakovleva IM (2005) Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry 66:73–79

    CAS  PubMed  Google Scholar 

  • Kim J, Kang C, Park T (2006) Enhanced hydrogen production by controlling light intensity in sulfur-deprived Chlamydomonas reinhardtii culture. Int J Hydrogen Energy 31:1585–1590

    CAS  Google Scholar 

  • Knuckey RM, Brown MR, Robert R, Frampton DMF (2006) Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacult Eng 35:300–313

    Google Scholar 

  • Koopman B, Lincoln EP (1983) Autoflotation harvesting of algae from high-rate pond effluents. Agr Wastes 5:231–246

    Google Scholar 

  • Krohn BJ, McNeff CV, Yan B, Nowlan D (2011) Production of algae-based biodiesel using the continuous catalytic Mcgyan process. Bioresour Technol 102:94–100

    CAS  PubMed  Google Scholar 

  • Kula MR, Schütte H (1987) Purification of proteins and the disruption of microbial cells. Biotechnol Progr 3:31–42

    CAS  Google Scholar 

  • Kurano N, Ikemoto H, Miyashita H (1995) Fixation and utilization of carbon dioxide by microalgal photosynthesis. Energy Convers Manag 36:689–692

    CAS  Google Scholar 

  • Lardon L, Elias T, Sialve B, Esteyer J-F, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Science Tech 43:6475–6481

    CAS  Google Scholar 

  • Lazarova V, Phillippe R, Sturny V, Arcangell JP (2006) Evaluation of economic viability and benefits of urban water reuse and its contribution to sustainable development. Water Prac Technol 1:1–11

    Google Scholar 

  • Lee DH (2011) Algal biodiesel economy and competition among bio-fuels. Bioresour Technol 102:43–49

    CAS  PubMed  Google Scholar 

  • Lee SJ, Kim SB, Kim JE, Kwon GS, Yoon BD, Oh HM (1998) Effects of harvesting method and growth stage on the flocculation of the green alga Botryococcus braunii. Lett Appl Microbiol 27:14–18

    Google Scholar 

  • Lehmann J (2007) A handful of carbon. Nature 447:143–144

    CAS  PubMed  Google Scholar 

  • Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24:815–820

    CAS  PubMed  Google Scholar 

  • Liang Y, Beardall J, Heraud P (2006) Changes in growth, chlorophyll fluorescence and fatty acid composition with culture age in batch cultures of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophycee). Bot Mar 49:165–173

    CAS  Google Scholar 

  • Lindblad P, Christensson K, Lindberg P, Fedorov A, Pinto F, Tsygankov A (2002) Photoproduction of H2 by wildtype Anabaena sp. PCC 7120 and a hydrogen uptake deficient mutant: from laboratory experiments to outdoor culture. Int J Hydrogen Energy 27:1271–1281

    CAS  Google Scholar 

  • Lopes da Silva T, Reis A, Medeiros R, Oliveira AC, Gouveia L (2009) Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow citometry. Appl Biochem Biotechnol 159:568–578

    CAS  Google Scholar 

  • Lopez CVG, Fernandez FGA, Sevilla JMF, Fernandez JFS, Garcia MCC, Molina Grima E (2009) Utilization of the cyanobacteria Anabaena sp ATCC 33047 in CO2 removal processes. Biores Technol 100:5904–5910

    Google Scholar 

  • Lueschen W, Putnam D, Kanne B, Hoverstad TA (1991) Agronomic practices for production of ethanol from sweet sorghum. J Prod Agric 4:619–625

    Google Scholar 

  • Lv P, Yuan Z, Wu C, Ma L, Chen Y, Tsubaki N (2007) Biosyngas production from biomass catalytic gasification. Energy Convers Manage 48:1132–1139

    CAS  Google Scholar 

  • Lynch DV, Thompson GA (1982) Low temperature-induced alterations in the chloroplast and microsomal membranes of Dunaliella salina. Plant Physiol 69:1369–1375

    CAS  PubMed  Google Scholar 

  • Madamwar D, Garg N, Shah V (2000) Cyanobacteria hydrogen production. World J Microb Biotechnol 16:757–767

    CAS  Google Scholar 

  • Maeda K, Owada M, Kimura N, Omata K, Karube I (1995) CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Convers Manag 36:717–720

    CAS  Google Scholar 

  • Marris E (2006) Black is the new green. Nature 442:624–626

    CAS  PubMed  Google Scholar 

  • Masukara H, Nakamura K, Mochimaru M, Sakurai H (2001) Photohydrogen production and nitrogenase activity in some heterocystous cyanobacteria. Biohydrogen II:63–66

    Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    CAS  Google Scholar 

  • Matsumoto M, Hiroko Y, Nobukazu S, Hiroshi O, Tadashi M (2003) Saccharification of marine microalgae using marine bacteria for ethanol production. Appl Bioch Biotech 105:247–254

    Google Scholar 

  • Maxwell EL, Folger AG, Hogg SE (1985) Resource evaluation and site selection for microalgae production systems. SERI/TR-215-2484

    Google Scholar 

  • Meier D, Faix O (1999) State of the art of applied fast pyrolysis of lignocellulosic materials—a review. Bioresour Technol 68:71–77

    CAS  Google Scholar 

  • Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127:740–748

    CAS  PubMed  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–136

    CAS  PubMed  Google Scholar 

  • Mendes RL (2008) Supercritical fluid extraction of active compounds from algae. In: Supercritical fluid extraction of nutraceuticals and bioactive compounds, pp 189–213

    Google Scholar 

  • Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Rev Energy 34:1–5

    Google Scholar 

  • Miao X, Wu Q (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110:85–93

    CAS  PubMed  Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846

    CAS  PubMed  Google Scholar 

  • Miao X, Wu Q, Yang C (2004) Fast pyrolysis of microalgae to produce renewable fuels. J Anal Appl Pyrolysis 71:855–863

    CAS  Google Scholar 

  • Middelberg APJ (1995) Process-scale disruption of microorganisms. Biotechnol Adv 13:491–555

    CAS  PubMed  Google Scholar 

  • Miller SA (2010) Minimizing land use and nitrogen intensity of bioenergy. Environ Sci Technol 44:3932–3939

    CAS  PubMed  Google Scholar 

  • Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20:848–889

    CAS  Google Scholar 

  • Moheimani NR, Borowitzka MA (2006) The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 18:703–712

    Google Scholar 

  • Molina Grima E, Fernandez F, Camacho F (1999) Photobioreactors: light regime, mass transfer and scale up. J Biotechnol 70:231–247

    CAS  Google Scholar 

  • Molina Grima ME, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    CAS  PubMed  Google Scholar 

  • Molina Grima E, Acién Fernández FG, Robles Medina A (2004) Downstream processing of cell-mass and products. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell, London, pp 215–252

    Google Scholar 

  • Mollah MYA, Morkovsky P, Gomes JAG, Kesmez M, Parga J, Cocke DL (2004) Fundamentals, present and future perspectives of electrocoagulation. J Hazard Mater 114:199–210

    CAS  PubMed  Google Scholar 

  • Morowvat MH, Rasoul-Amini S, Ghasemi Y (2010) Chlamydomonas as a “new” organism for biodiesel production. Bioresour Technol 101:2059–2062

    CAS  PubMed  Google Scholar 

  • Morweiser M, Kruse O, Hankamer B, Posten C (2010) Developments and perspectives of photobioreactors for biofuel production. Appl Microbiol Biotechnol 87:1291–1301

    Google Scholar 

  • Mulbry W, Kondrad S, Buyer J (2008a) Treatment of dairy and swine manure effluents using freshwater algae: fatty acid content and composition of algal biomass at different manure loading rates. J Appl Phycol 20:1079–1085

    Google Scholar 

  • Mulbry W, Kondrad S, Pizzarro C, Kebede-Westhead E (2008b) Treatment of dairy effluent using freshwater algae: algal productivity and recovery of manure nutrients using algal turf scrubbers. Bioresour Technol 99:8137–8142

    Google Scholar 

  • Murakami M, Ikenouchi M (1997) The biological CO2 fixation and utilization project by RITE (2): screening and breeding of microalgae with high capability in fixing CO2. Energy Convers Manag 38(suppl 1):S493–S497

    CAS  Google Scholar 

  • Mussatto SI, Dragone G, Guimarães P, Silva JP, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28:817–830

    CAS  PubMed  Google Scholar 

  • Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56

    CAS  PubMed  Google Scholar 

  • Nobre B, Marcelo F, Passos R, Palavra A, Gouveia L, Mendes R (2006) Supercritical carbon dioxide extraction of astaxanthin and other carotenoids from the microalga Haematococcus pluvialis. Eur Food Res Technol 223:787–790

    CAS  Google Scholar 

  • Oh HM, Lee SJ, Park MH, Kim HS, Kim HC, Yoon JH, Kwon GS, Yoon BD (2001) Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49. Biotechnol Lett 23:1229–1234

    CAS  Google Scholar 

  • Ohlrogge J, Allen D, Berguson B, DellaPenna D, Shachar-Hill Y, Stymne S (2009) Driving on biomass. Science 324:1019–1020

    CAS  PubMed  Google Scholar 

  • Oilgae (2009) Report. http://www.oilgae.com. Accessed Nov 2010

  • Oilworld (2009) http://www.oilworld.biz. Accessed Nov 2010

  • Okabe K, Murata K, Nakanishi M, Ogi T, Nurunnabi M, Liu Y (2009) Fischer–Tropsch synthesis over Ru catalysts by using syngas derived from woody biomass. Catal Lett 128:171–176

    CAS  Google Scholar 

  • Ono E, Cuello JL (2006) Feasibility assessment of microalgal carbon dioxide sequestration technology with photobioreactor and solar colector. Biosyst Eng 95:597–606

    Google Scholar 

  • OriginOil (2010) http://www.originoil.com November 2010

  • Ozgener O, Hepbasil A (2007) A review on the energy and exergy analysis of solar assisted heat pump systems. Renew Sust Energ Rev 11:482–496

    CAS  Google Scholar 

  • Pakdel H, Roy C (1991) Hydrocarbon content of liquid products and tar from pyrolysis and gasification of wood. Energy Fuels 5:427–436

    CAS  Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42

    CAS  PubMed  Google Scholar 

  • Patil V, Tran KQ, Giselrod HR (2008) Towards sustainable production of biofuel from microalgae. Int J Mol Sci 9:1188–1195

    CAS  PubMed  Google Scholar 

  • Perner-Nochta I, Posten C (2007) Simulations of light intensity variations in photobioreactors. J Biotechnol 131:276–285

    CAS  PubMed  Google Scholar 

  • PetroAlgae (2010) http://www.petroalgae.com. Accessed Nov 2010

  • Petrusevski B, Bolier G, van Breemen AN, Alaerts GJ (1995) Tangential flow filtration: a method to concentrate freshwater algae. Water Res 29:1419–1424

    CAS  Google Scholar 

  • Pienkos PT, Darzins A (2009) The promise and challenges of micro-algal derived biofuels. Biofuel Bioproducts Biorefin 3:431–440

    CAS  Google Scholar 

  • Poelman E, DePauw N, Jeurissen B (1997) Potential of electrolytic flocculation for recovery of micro-algae. Resour Conserv Recyc 19:1–10

    Google Scholar 

  • Powell EE, Hill GA (2009) Economic assessment of an integrated bioethanol–biodiesel–microbial fuel cell facility utilizing yeast and photosynthetic algae. Chem Eng Res Des 87:1340–1348

    CAS  Google Scholar 

  • Price GD, Woodger FJ, Badger MR, Howitt SM, Tucker L (2004) Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc Natl Acad Sci U S A 101:18228–18233

    CAS  PubMed  Google Scholar 

  • Prins MJ, Ptasinski KJ, Janssen FJJG (2006) More efficient biomass gasification via torrefaction. Energy 31:3458–3470

    CAS  Google Scholar 

  • Proviron (2010) http://www.proviron.com/algae. Accessed Nov 2010

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotehnol 57:287–293

    CAS  Google Scholar 

  • Pulz O (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    CAS  PubMed  Google Scholar 

  • Pushparaj B, Pelosi E, Torzillo G, Materassi R (1993) Microbial biomass recovery using a synthetic cationic polymer. Elsevier, Oxford, Royaume Uni

    Google Scholar 

  • Qiang H (2004) Environmental effects on cell composition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Wiley-Blackwell, New York, pp 83–93

    Google Scholar 

  • Raison JK (1986) Alterations in the physical properties and thermal responses of membrane lipids: correlations with acclimation to chilling and high temperature. In: St Joh JB, Berlin E, Jackson PG (eds) Frontiers of membrane research in agriculture. Rowman and Allanheld, Totowa, pp 383–401

    Google Scholar 

  • Ran CQ, Chen ZA, Zhang W, Yu XJ, Jin MF (2006) Characterization of photobiological hydrogen production by several marine green algae. Wuhan Ligong Daxue Xuebao 28(suppl 2):258–263

    Google Scholar 

  • Ranga Rao A, Dayananda C, Sarada R (2007a) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol 98:560–564

    PubMed  Google Scholar 

  • Ranga Rao A, Sarada R, Ravishankar G (2007b) Influence of CO2 on growth and hydrocarbon production in Botryococcus braunii. J Microbiol Biotechnol 17:414–419

    CAS  PubMed  Google Scholar 

  • Rao KK, Hall DO (1996) Hydrogen production by cyanobacteria: potential, problems and prospects. J Mar Biotechnol 4:10–15

    CAS  Google Scholar 

  • Reijnders L (2009) Microalgal and terrestrial transport biofuels to display fossil fuels. Energies 2:48–56

    CAS  Google Scholar 

  • Reijnders L, Huijbregts MAJ (2009) In: Transport biofuels: a seed to wheel perpertive. Springer, London

    Google Scholar 

  • Richmond A (2004) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, New York

    Google Scholar 

  • Rodolfi L, Zitelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotech Bioeng 102:100–112

    CAS  Google Scholar 

  • Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Biotechnology 19:430–436

    CAS  Google Scholar 

  • Rossi N, Jaouen O, Legentilhomme P, Petit I (2004) Harvesting of cyanobacterium Arthospira platensis using organic filtration membranes. Food Bioprod Process 82:244–250

    Google Scholar 

  • Rossignol N, Vandanjon L, Jaouen O, Quemeneur F (1999) Membrane technology for the continuous separation microalgae/culture medium: compared performances of cross flow microfiltration and ultrafiltration. Aquacult Eng 20:191–208

    Google Scholar 

  • Rubio J, Souza ML, Smith RW (2002) Overview of flotation as a wastewater treatment technique. Miner Eng 15:139–155

    CAS  Google Scholar 

  • Sanchez F, Vasudevan PT (2006) Biodiesel production by enzymatic transesterification of olive oil. Appl Biochem Biotechnol 135:1–14

    CAS  PubMed  Google Scholar 

  • Schenk PM, Skye R, Thomas-Hall, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Google Scholar 

  • Schütz K, Happe T, Troshina O, Lindblad P, Leitão E, Oliveira P, Tamagnini P (2004) Cyanobacterial H2-production—a comparative analysis. Planta 218:350–359

    PubMed  Google Scholar 

  • Shen Y, Pei Z, Yuan W, Mao E (2009) Effect of nitrogen and extraction method on lipid yield. Int J Agric Biol Eng 2:51–57

    CAS  Google Scholar 

  • Shiraiwa Y, Goyal A, Tolbert NE (1993) Alkalization of the medium by unicellular green algae during uptake of dissolved inorganic carbon. Plant Cell Physiol 34:649–657

    CAS  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416

    CAS  PubMed  Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102:10–16

    CAS  PubMed  Google Scholar 

  • Solix_Biofuels (2010) http://www.solixbiofuels.com. Accessed Nov 2010

  • Stehfest K, Toepel J, Wilhelm C (2005) The application of micro-FTIR spectroscopy to analyze nutrient stress-related changes in biomass composition of phytoplankton algae. Plant Physiol Biochem 43:717–726

    CAS  PubMed  Google Scholar 

  • Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuels 24:4062–4077

    CAS  Google Scholar 

  • Stern N (2006) The economics of climate change. HM Treasury, London

    Google Scholar 

  • Subhadra B, Edwards M (2010) An integrated renewable energy park approach for algal biofuel production in United States. Energy Policy 38:4897–4902

    CAS  Google Scholar 

  • Subitec (2010) http://www.subitec.com. Accessed Nov 2010

  • Sukenik A, Shelef G (1984) Algal autoflocculation—verification and proposed mechanism. Biotechnol Bioeng 26:142–147

    CAS  PubMed  Google Scholar 

  • Sukenik A, Bilanovic D, Shelef G (1988) Flocculation of microalgae in Brackish and sea waters. Biomass 15:187–199

    Google Scholar 

  • Sukenik A, Yamaguchi Y, Livne A (1993) Alterations in lipid molecular species of the marine eustigmatophyte Nannochloropsis sp. J Phycol 29:620–626

    CAS  Google Scholar 

  • Sveshnikov D, Sveshnikova N, Rao K, Hall D (1997) Hydrogen metabolism of mutant forms of Anabaena variabilis in continuous cultures and under nutritional stress. FEMS Microbiol Lett 147:297–301

    CAS  Google Scholar 

  • Tabak J (2009) Biofuels. Infobase Publishing, New York

    Google Scholar 

  • Tamagnini P, Leitão E, Oliveira P, Ferreira D, Pinto F, Harris D, Heidorn T (2007) Cyanobacterial hydrogenases. Diversity, Regulation and Applications. FEMS Microbiol Rev 31:692–720

    CAS  PubMed  Google Scholar 

  • Tickell J (2000) From the fryer to the fuel tank. The complete guide to using vegetable oil as an alternative fuel, Tallahasseee, USA

    Google Scholar 

  • Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 2:012701

    Google Scholar 

  • Ueda R, Hirayama S, Sugata K, Nakayama H (1996) Process for the production of ethanol from microalgae. US Patent 5,578,472

    Google Scholar 

  • Ueno Y, Kurano N, Miyachi S (1998) Ethanol production by dark fermentation in the marine green alga, chlorococcum littorale. J Ferment Bioeng 86:38–43

    CAS  Google Scholar 

  • Um BH, Kim YS (2009) Review: a chance for Korea to advance algal-biodiesel technology. J Ind Eng Chem 15:1–7

    CAS  Google Scholar 

  • USDA (2007) US Department of Agriculture. http://www.usda.gov

  • van Beilen JB (2010) Why microalgal biofuels won’t save the internal combustion machine. Biofuels Bioprod Biorefin 4:41–52

    Google Scholar 

  • van Harmelen T, Oonk H (2006) Microalgae biofixation processes: applications and potential contributions to greenhouse gas mitigation options. TNO Built Environmental Geosciences, Apeldoorn

    Google Scholar 

  • Vandamme D, Foubert I, Meesschaert B, Muylaert K (2010) Flocculation of microalgae using cationic starch. J Appl Phycol 22:525–530

    Google Scholar 

  • Vergara-Fernandez A, Vargas G, Alarcon N, Velasco A (2008) Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass Bioenergy 32:338–344

    CAS  Google Scholar 

  • Wang Z, Pan Y, Dong T, Zhu X, Kan T, Yuan L, Torimoto Y, Sadakata M, Li Q (2007) Production of hydrogen from catalytic steam reforming of biooil using C12A7-O-based catalysts. Appl Catal A 320:24–34

    CAS  Google Scholar 

  • Wang B, Li Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718

    CAS  PubMed  Google Scholar 

  • Weissman JC, Tillett DM (1992) Aquatic species project report; NREL/MP-232-4174. In: Brown LM, Sprague S (eds) National Renewable Energy Laboratory, pp 41–58

    Google Scholar 

  • Weissman J, Goebel RP, Benemann JR (1988) Photobioreactor design: mixing, carbon utilization and oxygen accumulation. Biotechnol Bioeng 31:336–344

    CAS  PubMed  Google Scholar 

  • Westfalia (2010) http://www.westfalia-separator.com/en/about/aboutnews/newspressedetail.php?ID=1021. Accessed Nov 2010

  • Wilde EW, Benemann JR, Weissman JC, Tillett DM (1991) Cultivation of algae and nutrient removal in a waste heat utilization process. J Appl Phycol 3:159–167

    Google Scholar 

  • Williams JA (2002) Keys to bioreactor selection. Chem Eng Prog 98:34–41

    CAS  Google Scholar 

  • Wu Q, Miao X (2003) A renewable energy from pyrolysis of marine and freshwater algae. Recent Adv Mar Biotechnol Biomater Bioprocess 111–125

    Google Scholar 

  • Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    CAS  PubMed  Google Scholar 

  • Yang Z, Guo R, Xu X, Fan Xa, Li X (2010) Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment. Int J Hydrogen Energy 35:9618–9623

    CAS  Google Scholar 

  • Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102:159–165

    CAS  PubMed  Google Scholar 

  • Yoon RH, Luttrell GH (1989) The effect of bubble size on fine particle flotation. Miner Process Extract Metal Rev 5:101–122

    Google Scholar 

  • Zeiler KG, Heacox DA, Toon ST et al (1995) The use of microalgae for assimilation and utilization of carbon dioxide from fossil fuel-fired power plant flue gas. Energy Convers Manag 36:707–712

    CAS  Google Scholar 

  • Zhila NO, Kalacheva GS, Volova TG (2005) Effect of nitrogen limitation on the growth and lipid composition of the green alga Botryococcus braunii Kutz IPPAS H-252. Russ J Plant Physiol 52:311–319

    Google Scholar 

  • Zwart RWR, Boerrigter H, van der Drift A (2006) The impact of biomass pre-treatment on the feasibility of overseas biomass conversion to Fischer–Tropsch products. Energy Fuels 20:2192–2197

    CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Engº João Sousa (LNEG, Portugal) for the figures and Dr João Miranda and Drª Ana Evangelista Marques (LNEG, Portugal) for their contributions to the Bioethanol and Biohydrogen sections, respectively. The author also thanks a native English speaker and friend, Stephanie Seddon-Brown, and the Engª Ana Paula Batista for assistance in the manuscript correction. The work was supported by FCT Project PTDC/ENR/68457/2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa Gouveia .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Luisa Gouveia

About this chapter

Cite this chapter

Gouveia, L. (2011). Microalgae as a Feedstock for Biofuels. In: Microalgae as a Feedstock for Biofuels. SpringerBriefs in Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17997-6_1

Download citation

Publish with us

Policies and ethics