Skip to main content

Bursicon, a Neuropeptide Hormone That Controls Cuticle Tanning and Beyond

  • Chapter
Recent Advances in Entomological Research
  • 2193 Accesses

Abstract

Insects are encased in a semi-rigid exoskeleton, which provides protection, locomotion, and internal attachments sites for muscles and internal organs. However, it also limits insect’s growth. Insect must shed its old exoskeleton periodically (molting) in order to grow. After each molt, the newly formed exoskeleton is usually soft, lightly pigmented and flexible, permitting insect to extend its body size for growth. Sclerotization of newly formed cuticle must occur in a relatively short period of time after each molt and completion of body expansion in order for the new exoskeleton to be functional for protection. Insects could not survive without properly hardened cuticle. Molting and cuticle sclerotization in insects are regulated by a precise coordination of at least 6 hormones including prothoracicotropic hormone (PTTH), 20-hydroxyecdysone (20E), eclosion hormone (EH), ecdysis triggering hormone (ETH), crustacean cardioactive peptide (CCAP) and bursicon. In our previous chapter (Song and Sun 2005 edited by Liu and Kang), we already introduced signal transduction pathways of PTTH, 20E and JH. Here in this chapter, we would like to summarize the molecular mechanisms of EH, ETH, CCAP and bursicon and their coordination in regulating the final steps of the molting process i.e. ecdysis and cuticle sclerotization. In particular, we will focus on the action of bursicon. The elucidation of the key biochemical events leading to cuticle sclerotization would add an important body of knowledge towards understanding insect development and for designing more efficient pest control strategies to disrupt the cuticle sclerotization process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • An S, Wang S, Gilbert L, et al. Global identification of bursicon-regulated genes in Drosophila melanogaster. BMC Genomics, 2008, 9: 424.

    Article  PubMed  Google Scholar 

  • An S, Wang S, Song Q. Identification of a novel bursiconregulated transcriptional regulator, md13379, in the house fly Musca domestica. Arch. Insect Biochem. Physiol., 2009, 70: 106–121.

    Article  PubMed  CAS  Google Scholar 

  • Arakane Y, Muthukrishnan S, Beeman RW, et al. Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning. Proc. Natl. Acad. Sci. USA, 2005, 102: 11337–11342.

    Article  PubMed  CAS  Google Scholar 

  • Baker J, Truman JW. Mutations in the Drosophila glycoprotein hormone receptor, rickets, eliminate neuropeptideinduced tanning and selectively block a stereotyped behavioral program. J. Exp. Biol., 2002, 205: 2555–2565.

    PubMed  CAS  Google Scholar 

  • Cottrell C B. The imaginal ecdysis of blowflies. The control of cuticular hardening and darkening. J. Exp. Biol., 1962a, 39: 395–411.

    CAS  Google Scholar 

  • Cottrell C B. The imaginal ecdysis of blowflies. Detection of the blood-borne darkening factor and determination of some of its properties. J. Exp. Biol., 1962b, 39: 413–430.

    Google Scholar 

  • Curtiss J, Halder G, Mlodzik M. Selector and signaling molecules cooperate in organ patterning. Nat. Cell Biol., 2002, 4: E48–E51.

    Article  PubMed  CAS  Google Scholar 

  • Crozatier M, Glise B, Khemici V, Vincent A. Veinpositioning in the Drosophila wing in response to Hh; new roles of Notch signaling. Mech. Dev., 2003, 120: 529–535.

    Article  PubMed  CAS  Google Scholar 

  • Davis M M, O’Keefe S L, Primrose D A, Hodgetts R B. A neuropeptide hormone cascade controls the precise onset of posteclosion cuticular tanning in Drosophila melanogaster. Development, 2007, 134: 4395–4404.

    Article  PubMed  CAS  Google Scholar 

  • Dewey E M, McNabb S L, Ewer J, et al. Identification of the gene encoding bursicon, an insect neuropeptide responsible for cuticle sclerotization and wing spreading. Curr. Biol., 2004, 14: 1208–1213.

    Article  PubMed  CAS  Google Scholar 

  • Ekengren S, Tryselius Y, Dushay M S, et al. A humoral stress response in Drosophila. Curr. Biol., 2001, 11: 714–718.

    Article  PubMed  CAS  Google Scholar 

  • Eriksen K K, Hauser F, Schiott M, et al. Molecular cloning, genomic organization, developmental regulation, and a knock-out mutant of a novel leu-rich repeats-containing G protein-coupled receptor (DLGR-2) from Drosophila melanogaster. Genome Res., 2000, 10: 924–938.

    Article  PubMed  CAS  Google Scholar 

  • Ewer J, Reynolds S. Neuropeptide control of molting in insects. // Pfaff DW, Arnold A P, Fahrbach S E, et al. Brain and Behavior. San Diego: Academic Press. 2002: 1–92.

    Chapter  Google Scholar 

  • Fogal W, Fraenkel G. The role of bursicon in melanization and endocuticle formation in the adult fleshfly, Sarcophaqa bullata. J. Insect Physiol., 1969, 15: 1235–1247.

    Article  CAS  Google Scholar 

  • Fortini M E, Artavanis-Tsakonas S. The suppressor of hairless protein participates in notch receptor signaling. Cell, 1994, 79: 273–282.

    Article  PubMed  CAS  Google Scholar 

  • Fraenkel G, Hsiao C. Hormonal and nervous control of tanning in the fly. Science, 1962, 138: 27–29.

    Article  PubMed  CAS  Google Scholar 

  • Fraenkel G, Hsiao C. Bursicon, a hormone which mediates tanning of the cuticle in the adult fly and other insects. J. Insect Physiol., 1965,11: 513–556.

    Article  CAS  Google Scholar 

  • Fraenkel G, Hsiao C, Seligman M. Properties of bursicon: an insect protein hormone that controls cuticular tanning. Science, 1966, 151: 91–93.

    Article  PubMed  CAS  Google Scholar 

  • Giraldez A J, Cohen S M. Wingless and Notch signaling provide cell survival cues and control cell proliferation during wing development. Development, 2003, 130: 6533–6543.

    Article  PubMed  CAS  Google Scholar 

  • Honegger H W, Market D, Pierce L A, et al. Cellular localization of bursicon using antisera against partial peptide sequences of this insect cuticle-sclerotizing neurohormone. J. Comp. Neurol., 2002, 452: 163–177.

    Article  PubMed  CAS  Google Scholar 

  • Honegger H W, Dewey E M, Kostron B. From bioassays to Drosophila genetics: strategies for characterizing an essential insect neurohormone, bursicon. Symp. Biol. Hung., 2004, 55: 91–102.

    Article  CAS  Google Scholar 

  • Honegger H W, Dewey E M, Ewer J. Bursicon, the tanning hormone of insects: recent advances following the discovery of its molecular identity. J. Comp. Physiol. A., 2008, 194: 989–1005.

    Article  CAS  Google Scholar 

  • Howard S C, Hester A, Herman K. The Ras/PKA signaling pathway may control RNA polymerase II elongation via the Spt4p/Spt5p complex in Saccharomyces cerevisiae. Genetics, 2003, 165: 1059–1070.

    PubMed  CAS  Google Scholar 

  • Hsu S Y. New insights into the evolution of the relaxin-LGR signaling system. Trends Endocrinol. Metab., 2003, 7: 303–309.

    Article  Google Scholar 

  • Hsu S Y, Nakabayashi K, Nishi S, et al. Activation of orphan receptors by the hormone relaxin. Science, 2002, 295: 671–674.

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Zhang Y, Li M, et al. RNA interference-mediated silencing of the bursicon gene induces defects in wing expansion of silkworm. FEBS Lett., 2007, 581: 697–701.

    Article  PubMed  CAS  Google Scholar 

  • Jiang C, Baehrecke E H, Thummel C S. Steroid regulated programmed cell death during Drosophila metamorphosis. Development, 1997, 124: 4673–4683.

    PubMed  CAS  Google Scholar 

  • Johannes B, Preiss A. Wing vein formation in Drosophila melanogaster: Hairless is involved in the cross-talk between Notch and EGF signaling pathways. Mech. Dev., 2002, 115: 3–14.

    Article  PubMed  CAS  Google Scholar 

  • Johnson S A, Milner M J. The final stages of wing development in Drosophila melanogaster. Tissue Cell, 1987, 19: 505–513.

    Article  PubMed  CAS  Google Scholar 

  • Kaltenhauser U, Kellermann J, Andersson K, et al. Purifcation and partial characterization of bursicon, a cuticle sclerotizing neuropeptide in insects, from Tenebrio molitor. Insect Biochem. Mol. Biol., 1995, 25: 525–533.

    Article  CAS  Google Scholar 

  • Kiger J A, Natzle J E, Kimbrell D A, Paddy M R, Kleinhesselink K, Green M M. Tissue remodeling during maturation of the Drosophila wing. Dev. Biol., 2007, 301: 178–191.

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Kodama A, Hayasaka Y, Ohta T. Activation of the cAMP/PKA signaling pathway is required for post-ecdysial cell death in wing epidermal cells of Drosophila melanogaster. Development, 2004, 131: 1597–1606.

    Article  PubMed  CAS  Google Scholar 

  • Klein T, Seugnet L, Haenlin M, Martinez Arias A. Two different activities of Suppressor of Hairless during wing development in Drosophila. Development, 2000, 127: 3553–3566.

    PubMed  CAS  Google Scholar 

  • Kostron B, Marquardt K, Kaltenhauser U, Honegger H. Bursicon, the cuticle sclerotizing hormonecomparison of its molecular mass in different insects. J. Insect Physiol., 1995, 41: 1045–1053.

    Article  CAS  Google Scholar 

  • Kumagai J, Hsu S Y, Matsumi H, et al. INSL3/Leydig insulin-like peptide activates the LGR8 receptor important in testis descent. J. Biol. Chem., 2002, 277: 31283–31286.

    Article  PubMed  CAS  Google Scholar 

  • Luo C W, Dewey E M, Sudo S, et al. Bursicon, the insect cuticle-hardening hormone, is a heterodimeric cystine knot protein that activates G protein-coupled receptor LGR2. Proc. Natl. Acad. Sci.,2005, 102: 2820–2825.

    Article  PubMed  CAS  Google Scholar 

  • Mills R R, Lake C R. Hormonal control of tanning in the American cockroach. IV. Preliminary purification of the hormone. J. Insect Physiol., 1966, 12: 1395–1401.

    Article  CAS  Google Scholar 

  • Mills R R, Nielsen D J. Changes in the diuretic and antidiuretic properties of the haemolymph during the six-day vitellogenic cycle in the American cockroach. Gen. Comp. Endocrinol., 1967, 9: 380–382.

    Article  PubMed  CAS  Google Scholar 

  • Mendive F M, Van Loy T, Claeysen S, et al. Drosophila molting neurohormone bursicon is a heterodimer and the natural agonist of the orphan receptor DLGR2. FEBS Lett., 2005, 579: 2171–2176.

    Article  PubMed  CAS  Google Scholar 

  • Natzle J E, Kiger J A, Green M M. Bursicon signaling mutations separate the epithelialmesenchymal transition from programmed cell death during Drosophila melanogaster wing maturation. Genetics, 2008, 180: 885–893.

    Article  PubMed  Google Scholar 

  • Nishi S, Hsu S Y, Zell K, Hsueh A J. Characterization of two fly LGR (leucine-rich repeatcontaining, G protein-coupled receptor) proteins homologous to vertebrate glycoprotein hormone receptors: constitutive activation of wild-type fly LGR1 but not LGR2 in transfected mammalian cells. Endocrinol., 2000, 141: 4081–4090.

    Article  CAS  Google Scholar 

  • Reynolds S E. Hormonal regulation of cuticle extensibility in newly emerged adult blowflies. J. Insect Physiol., 1976, 22: 529–534.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds S E. Control of cuticle extensibility in the wings of adult Manduca at the time of eclosion: effects of eclosion hormone and bursicon. J. Exp. Biol., 1977, 70: 27–39.

    CAS  Google Scholar 

  • Reynolds S E. Integration of behavior and physiology in ecdysis. Adv. J. Insect Physiol., 1980, 15: 475–595.

    Article  CAS  Google Scholar 

  • Reynolds S E. Bursicon. // Downer R G H, Laufer H. Endocrinology of Insects. Liss: Alan R. 1983: 235–348.

    Google Scholar 

  • Schweisguth F. Suppressor of Hairless is required for signal reception during lateral inhibition in Drosophila pupal notum. Development, 1995, 121: 1875–1888.

    PubMed  CAS  Google Scholar 

  • Schweisguth F, Posakony JW. Antagonistic activities of Suppressor of Hairless and Hairless control alternative cell fates in the Drosophila adult epidermis. Development, 1994, 120: 1433–1441.

    PubMed  CAS  Google Scholar 

  • Seligman L M, Doy E A, Crossley A C. Hormonal control of morphogenetic cell death of the wing hypodermis in Lucilia cuprina. Tissue Cell, 1975, 7: 281–296.

    Article  PubMed  CAS  Google Scholar 

  • Seligman M, Doy F A. Studies on cyclic AMP mediation of hormonally induced cytolysis of the alary hypodermal cells and of hormonally controlled dopa synthesis in Lucilia cuprina. Israel J. Ent., 1972, 7: 129–142.

    CAS  Google Scholar 

  • Seligman M, Doy F A. Hormonal regulation of disaggregation of cellular fragments in the haemolymph of Lusilia cuprina. J. Insect Physiol., 1973, 19: 125–135.

    Article  CAS  Google Scholar 

  • Seligman I M. Bursicon. // Miller, T.A. Neurohormonal Techniques in Insects. Berlin: Springer, 1980: 137–153.

    Chapter  Google Scholar 

  • Taghert P H, Truman JW. Identification of the bursiconcontaining neurones in abdominal ganglia of the tobacco hornworm, Manduca sexta. J. Exp. Biol.,1982, 98: 385–401.

    CAS  Google Scholar 

  • Truman J W. The eclosion hormone system of insects. Prog. Brain,1992, 92: 361–374.

    CAS  Google Scholar 

  • Van Loy T, Van Hiel M B, Vandersmissen H P, et al. Evolutionary conservation of bursicon in the animal kingdom. Gen. Comp. Endocrinol.,2007, 153: 59–63.

    Article  PubMed  Google Scholar 

  • Von Knorre D, Gersch M, Kusch T. Zur Frage der Beeinflussung des ‘tanning’ phanomens durch zyklisches-3′, 5′ AMP. Zool. Jb. (Physiol.), 1972, 76: 434–440.

    Google Scholar 

  • Wang S, An S, Song Q. Transcriptional expression of bursicon and novel bursicon-regulated genes in the house fly Musca domestica. Arch. Insect Biochem. Physiol., 2008, 68: 100–112.

    Article  PubMed  CAS  Google Scholar 

  • Wang S J, An S H, Stanley D, Song Q. Cloning and characterization of a bursicon-regulated gene Su (H) in the house fly Musca domestica. Insect Science, 2009, 16: 207–217.

    Article  Google Scholar 

  • Wesley C S. Notch and Wingless regulate expression of cuticle patterning genes. Mol. Cell Biochem., 1999, 19: 5743–5758.

    CAS  Google Scholar 

  • Zanassi P, Paolillo M, Feliciello A, et al. cAMP-dependent protein kinase induces cAMPresponse element-binding protein phosphorylation via an intracellular calcium release/ERK-dependent pathway in striatal neurons. J. Biol. Chem., 2001, 276: 11487–11495.

    Article  PubMed  CAS  Google Scholar 

  • Zitnan D, Adams M E. Neuroendocrine Regulation of Insect Ecdysis. // Gilbert, L.I., Iatrou K, S.S., Gill, S.S. Comprehensive Insect Biochemistry, Physiology, Pharmacology, and Molecular Biology, Volume 3. London: Elsevier Press, 2005: 1–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Song, Q., An, S. (2011). Bursicon, a Neuropeptide Hormone That Controls Cuticle Tanning and Beyond. In: Liu, T., Kang, L. (eds) Recent Advances in Entomological Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17815-3_8

Download citation

Publish with us

Policies and ethics