Skip to main content

The Complexity in Activity of Biological Neurons

  • Chapter
Complex Systems

Part of the book series: Nonlinear Physical Science ((NPS,volume 0))

  • 1877 Accesses

Abstract

We sum up our work about neurodynamics in this chapter. It is widely considered that the nervous system in man and animals is a rather complicated nonlinear dynamical system. Therefore, it is both necessary and important to understand the behavior occurred in the nervous system from the perspective of nonlinear dynamics. Actually, a great many of novel and puzzling phenomena are just observed in a single neuron, but their physiological or dynamical mechanisms remain open so far. In other words, single neurons are not simple. We show many firing patterns in theoretical neuronal models or neurophysiological experiments of single neurons in rats in this chapter. And then we introduce three representative examples of best known mathematical neuron models. The two types of neuronal excitability are illustrated by the Hodgkin-Huxley mode and the Morris-Lecar model. Especially, it is shown that we can change the types of neuronal excitability using the methods of bifurcation control. Besides, we display bursting and its topological classification, and explain bifurcation, chaos and crisis by the existing neuronal models. We give emphasis to sensitive responsiveness of aperiodic firing neurons to external stimuli, and show experimental phenomena and their underlying nonlinear mechanisms. The synchronization between neurons is remarked simply. We stress a constructive role of noise in the nervous system, and depict the phenomena of stochastic resonance and coherence resonance, and give their dynamical mechanisms. The common analysis methods are presented for the time series of the interspike intervals. Finally, we give two application examples about controlling chaos and stochastic resonance, and draw some conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abed E.H. and Fu J.H., 1986, Local feedback stabilization and bifurcation control I. Hopf bifurcation, Syst. Control Lett., 7, 11–17.

    Article  MATH  MathSciNet  Google Scholar 

  • Abed E.H., Wang H.O. and Chen R.C., 1994, Stabilization of period doubling bifurcations and implications for control of chaos, Physica D, 70, 154–164.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Aihara K., and Matsumoto G., 1986, Chaotic oscillations and bifurcations in squid giant axons, In: Chaos (A.V. Holden, ed), Manchester and Princeton University Press, Princeton, NJ, 257–269.

    Google Scholar 

  • Aihara K., Matsumoto G. and Ichikawa M., 1985, An alternating periodic-chaotic sequence observed in neural oscillators, Phys. Lett. A, 111, 251–255.

    Article  ADS  Google Scholar 

  • Auerbach D., Cvitanovic P., Eckmann J.P., Gunaratne G. and Procaccia I., 1987, Exploring chaotic motion through periodic orbits, Phys. Rev. Lett., 58, 2387–2389.

    Article  ADS  MathSciNet  Google Scholar 

  • Baer S.M., Rinzel J. and Carrillo H., 1995, Analysis of an autonomous phase model for neuronal parabolic bursting, J. Math. Biol., 33, 309–333.

    MATH  Google Scholar 

  • Barbi M., Chillemi S., Garbo A.D. and Reale L., 2003, Stochastic resonance in a sinusoidally forced LIF model WIth noisy threshold, BioSystems, 71, 23–28.

    Article  Google Scholar 

  • Bertram R., Butte M.J., Klemel T. and Sherman A., 1995, TopologIcal and phenomenological classification of bursting oscillations, Bull. Math. Biol., 57, 413–439.

    MATH  Google Scholar 

  • Buonocore A., Nobile A.G., Ricciardi L.M., 1987, A new integral equation for the evaluation of first-passage-time probability density, Adv. Appl. Prob., 19, 784–800.

    Article  MATH  MathSciNet  Google Scholar 

  • Bulsara R., Elson T.C., Doering C.R., Lowen S.B. and Lindenberg K., 1996, Coopeative behavior in periodically driven noisy integrate-and-fire models of neuronal dynamics, Phys. Rev. E, 53, 3958–3969.

    Article  ADS  Google Scholar 

  • Braun H.A., Wissing H., Schafer K. and Hirsch M.C., 1994, Oscillation and noise determine signal transduction in shark multimodal sensory cells, Nature, 367. 270–273.

    Article  ADS  Google Scholar 

  • Chay T.R., Fan Y.S. and Lee Y.S., 1995, Bursting, spiking, chaos, fractals, and universality in biological rhythms, International Journal of Bifurcattion and Chaos; 5, 595–635.

    Article  MATH  Google Scholar 

  • Chen D.S., Wang H.O. and Chen G., 2001, Anti-control of Hopf bifurcation, IEEE Trans. Circ. Sys.-I, 48, 661–672.

    Article  MATH  Google Scholar 

  • Chialvo D.R., Longtin A. and Muller-Gerking J., 1997, Stochastic resonance in models of neuronal ensembles, Phys. Rev. E, 55, 1798–1808.

    Article  ADS  Google Scholar 

  • Cvitanovic P., 1998, Invariant measurement of strange sets in terms of cycles, Phys. Rev. Lett., 61, 2729–2732.

    Article  ADS  MathSciNet  Google Scholar 

  • Cymbalyuk G. and Shilnikov A., 2005, Coexistence of tonic spikIng oscillations in a leech neuron model, Journal of Computational Neuroscience, 18, 255–263.

    Article  MathSciNet  Google Scholar 

  • Davidchack R.L. and Lai Y.C., 1999, Efficient algorithm for detecting unstable periodic orbits in chaotic systems, Physical Review E, 60, 6172–6175.

    Article  ADS  Google Scholar 

  • Douglass J.K., Wilkens L., Pantazelou E. and Moss F., 1993, Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance, Nature, 365, 337–340.

    Article  ADS  Google Scholar 

  • Ermentrout B., 2002, Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students, SIAM, Philadelphia.

    Book  MATH  Google Scholar 

  • Ermentrout G.B. and Kopell N., 1986, Parabolic bursting in an excitable system coupled with a slow oscillation, SIAM J. Appl. Math., 46, 233–253.

    Article  MATH  MathSciNet  Google Scholar 

  • Elson R.C., Selverston A.I., Huerta R., Rulkov N.F., Rabinovich M.I. and Abarbanel H.D.I., 1998, Synchronous behavior of two coupled biological neurons, Phys. Rev. Lett., 81, 5692–5695.

    Article  ADS  Google Scholar 

  • Faisal A.A., Selen L.P.J. and Wolpert D.M., 2008, Noise in the nervous system, Nat. Rev. Neurosci., 9, 292–303.

    Article  Google Scholar 

  • Feudel D., Neiman A., Pei X., Wojtenek W. and Moss F., 2002, Homoclinic bifurcation in a thermally sensitive neuron, In: Experimental chaos, AIP Conference Proceedings, 622, 139–148.

    Article  ADS  Google Scholar 

  • FitzHugh R., 1961, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1, 445–466.

    Article  ADS  Google Scholar 

  • Fries P., 2001, A mechanism for cognitive dynamics: neuronal communication through neuronal coherence, TICS, 9, 474–480.

    Google Scholar 

  • Gammaitoni L., Hanggi P., Jung P. and Marchesoni F., 1998, Stochastic resonance, Rev. Mod. Phys., 70, 223–287.

    Article  ADS  Google Scholar 

  • Gong P.L., Xu J.X., Long K.P. and Hu S.J., 2002, Chaotic interspike intervals with multipeaked histogram in neurons, International Journal of Bifurcation ands Chaos, 12, 319–328.

    Article  Google Scholar 

  • Gong Y.F., Xu J.X., Ren W., Hu S.J., and Wang F.Z., 1998, Determining the degree of chaos from analysis of ISI time series in the nervous system: a comparison between correlation dimension and nonlinear forecasting methods, Biological Cybernetics, 78, 159–165.

    Article  MATH  Google Scholar 

  • Grassberger P., 1986, Do climatic attractors exist? Nature, 323, 609–612.

    Article  ADS  Google Scholar 

  • Grassberger P. and Procaccia I., 1983a, Characterization of strange attractors, Phys Rev. Lett., 50, 346–349.

    Article  ADS  MathSciNet  Google Scholar 

  • Grassberger P. and Procaccia I., 1983b, Measuring the strangeness of strange attractors, Physica D, 9, 189–208.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Gray C.M., Konig P., Engel A.K. and Singer W., 1989, Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties, Nature, 338, 334–337.

    Article  ADS  Google Scholar 

  • Grebogi C., Ott E. and Yorke J.A., 1986, Critical exponent of chaotic transients in nonlinear dynamical systems, Phys. Rev. Lett., 57, 1284–1287.

    Article  ADS  MathSciNet  Google Scholar 

  • Grebogi C., Ott E., Romeiras F. and Yorke J.A., 1987, Critical exponents for crisisinduced intermittency, Phys. Rev. A, 36, 5365–80.

    Article  ADS  MathSciNet  Google Scholar 

  • Gu H.G., Ren W., Lu Q.S., Wu S.G., Yang M.H. and Chen W.J., 2001, Integer multiple spiking in neuronal pacemakers without external periodic stimulation, Physics Letter A, 285, 63–68.

    Article  ADS  MathSciNet  Google Scholar 

  • Gu H.G., Li L., Yang M.H., Liu Z.Q., and Ren W., 2003, Integer muliple bursting generated in an experimental neural pacemaker, Acta Biophyica Sinica, 19, 68–72.

    Google Scholar 

  • Gu H., Yang M.H., Li L., Liu Z. and Ren W., 2002, Experimental observation of the stochastic bursting caused by coherence resonance in a neural pacemaker, Neuroreport, 13, 1657–1660.

    Article  Google Scholar 

  • Guckenheimer J. and Holmes P., 1997, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields 5th edition, Springer, New York, 150–152.

    Google Scholar 

  • Guckenheimer J. and Oliva R.A., 2002, Chaos in the Hodgkin-Huxley model, SIAM J. Applied Dynamical Systems, 1, 105–114.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Gong Y.F., Xu J.X. and Hu S.J., 1998, Stochastic resonance: When does it not occur in neuronal models? Phys. Lett. A, 243, 351–359.

    Article  ADS  Google Scholar 

  • Gong P.L. and Xu J.X., 2001, Globall dynamics and stochastic resonance of the forced FitaHugh-Nagumo neuron model, Phys. Rev. E, 63, 031906.

    Article  ADS  Google Scholar 

  • Han S., Duan Y.B., Jian Z., Xie Y., Xing J.L. and Hu S.J., 2002, Calculating the degree of complexity of interspike interval with the method of approximate entropy, Acta Biophysica Sinica, 18, 448–451.

    ADS  Google Scholar 

  • Hassard B.D., Kazarinoff N.D. and Wan Y.H., 1981, Theory and application of Hopf bifurcation, in: London Mathematical Society Lecture Note Series, 41, Cambridge Univ. Press, Cambridge, 86–91.

    Google Scholar 

  • Hassouneh M.A., Lee H.C. and Abed E.H., 2004, Washout filters in feedback control: Benefits, Limitations and Extensions, In: Proceeding of the 2004 American Control Conference, Boston, Massachusetts, June 30–July 2, 3950–3955.

    Google Scholar 

  • Hindmarsh J.L. and Rose R.M., 1984, A model of neuronal bursting using three coupled first order differential equations, Proc. R. Soc. London, Sere B, 221, 87–102.

    Article  ADS  Google Scholar 

  • Hodgkin A., and Huxley A., 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol, 117, 500–544.

    Google Scholar 

  • Hoffman R.E., Shi W.X. and Bunney B.S., 1995, Nonlinear sequence-dependent structure of nigral dopamine neuron interspike interval firing patterns, Biophys. J., 69, 128–137.

    Article  ADS  Google Scholar 

  • Hu S.J., Yang H.J., Jian Z., Long K.P., Duan Y.B., Wan Y.H., Xing J.L., Xu H., and Ju G., 2000, Adrenergic sensitivity of neurons with non-periodic firing activity in rat injured dorsal root ganglion, Neuroscience, 101, 689–698.

    Article  Google Scholar 

  • Izhikevich E.M., 2000, Neural excitability, spiking, and bursting, International Jour nal of Bifurcation and Chaos, 10, 1171–1266.

    Article  MATH  MathSciNet  Google Scholar 

  • Izhikevich E.M., 2001, Resonate-and-fire neurons, Neural Networks, 14, 883–894.

    Article  Google Scholar 

  • Izhikevich E.M., 2007, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, MIT, Cambridge, MA.

    Google Scholar 

  • Jin W.Y., Xu J.X., Wu Y., Hong L. and Wei Y.B., 2006, Crisis of interspike intervals in HodgkIn-Huxley model, Chaos, Solitons and Fractals, 27, 952–958.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Kang Y.M., Xu J.X. and Xle Y., 2005a, A further insight Into stochastic resonance in an integrate-and-fire neuron with noisy periodic input, Chaos, Solitons and Fractals, 25, 165–170.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Kang Y.M., Xu J.X. and Xie Y., 2005b, Signal-to-noise ratio gain of a noisy neuron that transmits subthreshold periodic spike trains, Phys. Rev. E, 72, 021902.

    Article  ADS  Google Scholar 

  • Kim J.H. and Stringer J.,1992, Appl. Chaos, Wiley, New York, 441–455.

    Google Scholar 

  • Kretzberg J., Warzecha A.K. and Egelhaaf M., 2001, Neural coding with graded membrane potential changes and spikes, Journal of Computational Neuroscience; 11, 153–164.

    Article  Google Scholar 

  • Lathrop D.P. and Kostelich E.J., 1989, Characterization of an experimental strange attractor by periodic orbits, Phys. Rev. A, 40, 4028–4031.

    Article  ADS  MathSciNet  Google Scholar 

  • Levin J.E. and Miller J.P., 1996, Broadband neural encoding in the cricket cereal sensory system enhanced by stochastic resonance, Nature, 380, 165–168.

    Article  ADS  Google Scholar 

  • Li L., Gu H.G., Yang M.H., Liu Z.Q. and Ren W., 2003, Bifurcation scenario rhythm in the firing pattern transition of a neural pacemaker, Acta Biophysica Sinica, 19, 388–394.

    Google Scholar 

  • Liu W.M., 1994, Criterion of Hopf bifurcation without using eigenvalues, J. Math. Anal. Appl., 182, 250–255.

    Article  MATH  MathSciNet  Google Scholar 

  • Longtin A., 1993a, Nonlinear forecasting of spike trains from sensory neurons, International Journal of Bifurcation and Chaos, 3, 651–661.

    Article  MATH  MathSciNet  Google Scholar 

  • Longtin A., 1993b, Stochastic resonance in neuron models, Journal of Statistical Physics, 70, 309–327.

    Article  MATH  ADS  Google Scholar 

  • Longtin A., 1995, Mechanisms of stochastic phase-locking, Chaos, 5, 209–215.

    Article  ADS  Google Scholar 

  • Longtin A., 1997, Autonomous stochastic resonance in bursting neurons, Phys. Rev. E, 55, 868–876.

    Article  ADS  Google Scholar 

  • Longtin A. and Bulsara A., 1991, Time-interval sequences in bistable systems and the noise-induced transmission of information by sensory neurons, Phys. Rev. Lett., 67, 656–659.

    Article  ADS  Google Scholar 

  • Longtin A., and Hinzer K., 1996, Encoding with bursting, subthreshold oscillations, and noise In mammalian cold receptors, Neural Computation, 8, 215–255.

    Article  Google Scholar 

  • Mandelblat Y., Etzion Y., Grossman Y. and Golomb D., 2001, Period doubling of calcium spike firing in a model of a Purkinje cell dendrite, Journal of Computational Neuroscience, 11, 43–62.

    Article  Google Scholar 

  • Matsumoto G., Aihara K., Hanyu Y., Takahashi N., Yoshizawa S. and Nagumo J., 1987, Chaos and phase lockIng in normal squid axons, Physics Letters A, 123, 162–166.

    Article  ADS  Google Scholar 

  • Michael V.L. and Bennett D.P., 2006, Electrical synapses between neurons synchronize gamma oscillations generated during higher level processing in the nervous system, Electroneurobiologia, 14, 227–250.

    Google Scholar 

  • Mizrachi A.B., Procaccia I. and Grassberger P., 1984, The characterization of experimental (noisy) strange attractor, Phys. Rev. A, 29, 975–977.

    Article  ADS  Google Scholar 

  • Morris C., and Lecar H., 1981, Voltage oscillations in the barnacle giant muscle fiber, Biophys. J., 35, 193–213.

    Article  ADS  Google Scholar 

  • Moss F., Ward L.M., and Sannita W.G., 2004, Stochastic resonance and sensory information processing: a tutorial and review of application, Clin Neurophysiol, 115, 267–281.

    Article  Google Scholar 

  • Mpitsos G.J., Burton R.M., Creech Jr. H.C. and Soinila S.O., 1988, Evidence for chaos in spike trains of neurons that generate rhythmic motor patterns, Brain Res. Bull., 21, 529–538.

    Article  Google Scholar 

  • Neiman A.B. and Russell D.F., 2002, Synchronization of noise-induced bursts in noncoupled sensory neurons, Phys. Rev. Lett., 88, 138103.

    Article  ADS  Google Scholar 

  • Osborne A.R., and Provenzale A., 1989, Finite correlation dimension for stochastic systems with power-law spectra, Physica D, 35, 357–381.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Pincus S.M., 1991, Approximate entropy as a measure of system complexity, Proc. Natl. Acad. Sci. USA, 88, 2297–2304.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Pikovsky A.S. and Kurths J., 1997, Coherence resonance in a noise-driven excitable system, Phys. Rev. Lett., 78, 775–778.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Plesser H.E. and Geisel T., 1999, Markov analysis of stochastic resonance in a periodically driven integrate-and-fire neuron, Phys. Rev. E, 59, 7008–7017.

    Article  ADS  Google Scholar 

  • Ren W., Gu H.G., Jian Z., Lu Q.S., and Yang M.H., 2001, Different classifications of UPOs in the parametrically different chaotic lSI series of neural pacemaker, Neuroreport, 12, 2121–2124.

    Article  Google Scholar 

  • Ren W., Hu S.J., Zhang B.J., Wang F.Z., Gong Y.F. and Xu J.X., 1997, Periodadding bifurcation with chaos in the interspike intervals generated by an experimental neural pacemaker, International Journal of Bifurcation and Chaos, 7, 1867–1872.

    Article  Google Scholar 

  • Rinzel J., 1985, Bursting oscillations in an excitable membrane model, In: Ordinary and partial Differential Equations Proceedings of the 8th Dundee Conference (B.D. Sleeman and R.J. Jarvis, eds.), 304–316, Lecture Notes in Mathematics 1151, Springer, Berlin.

    Google Scholar 

  • Rinzel J., 1987, A formal classification of bursting mechanisms in excitable systerns, In: Mathematical Topics in Population Biology; Morphogenesis; and Neurosciences (E. Teramoto, M. Yamaguti, eds), Vol. 71 of Lecture Notes in Biomathematics, Springer, Berlin.

    Google Scholar 

  • Rinzel J. and Ermentrout B., 1989, Analysis of neural excitability and oscillations, In: Methods in Neuronal Modeling (Koch C, Segev I, eds): MIT, Cambridge, MA.

    Google Scholar 

  • Rinzel J. and Lee Y.S., 1987, Dissection of a model for neuronal parabolic bursting, J. Math. Biol., 25, 653–675.

    Article  MATH  MathSciNet  Google Scholar 

  • Rozental R., Andrade-Rozental A.F., Zheng X., Urban M., Spray D.C. and Chiu F.C., 2001, Gap Junction-Mediated Bidirectional Signaling between Human Fetal Hippocampal Neurons and Astrocytes, Develpmental Neuroscience, 23, 420–431.

    Article  Google Scholar 

  • Russell D.F., Wilkens L.A. and Moss F., 1999, Use of behavioural stochastic resonance by paddle fish for feeding, Nature, 402, 291–294.

    Article  ADS  Google Scholar 

  • Schmelcher P., and Diakonos F.K., 1998, General approach to the localization of unstable periodic orbits in chaotic dynamical systems, Physical Review E, 57, 2739–2746.

    Article  ADS  Google Scholar 

  • Schnitlzer A. and Gross J., 2005, Normal and pathological oscillatory communication in the brain, Nat. Rev. Neurosci., 6, 285–296.

    Google Scholar 

  • Shimokawa T., Pakdaman K., Takahata T., Tanabe S. and Sato S., 2000, A first-passage-time analysis of the periodically forced noisy leaky integrate-and-fire model, Biol. Cybern., 83, 327–340.

    Article  MATH  Google Scholar 

  • Shilnikov A. and Cymbalyuk G., 2005, Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe, Physical Review Letters, 94, 048101.

    Article  ADS  Google Scholar 

  • Shimokawa T., Pakdaman K. and Sato S., 1999, Mean discharge frequency locking in the response of a noisy neuron model to subthreshold periodic stimulation, Phys. Rev. E, 60, R33–R36.

    Article  ADS  Google Scholar 

  • Singer W., 1993, Synchronization of cortical activity and its putative role in information processing and learning, Annu. Rev. Physiol., 55, 349–374.

    Article  Google Scholar 

  • So P., Francis J.T., Netoff T.I., Gluckman B.J. and Schiff S.J., 1998, Periodic orbits: a new language for Neuronal dynamics, Biophys. J., 74, 2776–2785.

    Article  ADS  Google Scholar 

  • So P., Ott E., Schiff S.J., Kaplan D.T., Sauer T. and Grebogi C., 1996, Detecting unstable periodic orbits in chaotic experimental data, Physical Review Letters, 76, 4705–4708.

    Article  ADS  Google Scholar 

  • So P., Ott E., Sauser T., Gluckman B.J., Grebogi C. and Schiff S.J., 1997, Extracting unstable orbits from chaotic time series data, Physical Review E, 55, 5398–5417.

    Article  ADS  MathSciNet  Google Scholar 

  • Suzuki H., Aihara K., Murakami J. and Shimozawa T., 2000, Analysis of neural spike trains with interspike interval reconstruction, Biological Cybernetics, 82, 305–311.

    Article  MATH  Google Scholar 

  • Sugihara G., and May R.M., 1990, Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series, Nature, 344, 734–741.

    Article  ADS  Google Scholar 

  • Szczepaski J., Amigo J.M., Wajnryb E. and Sanchez-Vives M.V., 2003, Application of Lempel-Ziv complexity to the analysis of neural discharges, Network: Computation in Neural Systems, 14, 335–350.

    Article  Google Scholar 

  • Szczepanski J., Amigo J.M., Wajnryb E. and Sanchez-Vives M.V., 2004, Characterizing spike trains with Lempel-Ziv complexity, Neurocomputing, 58-60, 79–84.

    Article  MathSciNet  Google Scholar 

  • Takahashi N., Hanyu Y., Musha T., Kubo R. and Matsumoto G., 1990, Global bifurcation structure in periodically stimulated giant axons of squid, Physica D, 43, 318–334.

    Article  MATH  ADS  Google Scholar 

  • Theiler J., Eubank S., Longtin A. Galdrikian B. and Farmer J.D., 1992, Testing for nonlinearity in time series: the method of surrogate data, Physica D, 58, 77–94.

    Article  MATH  ADS  Google Scholar 

  • Traub R.D., Wong R.K.S., Miles R. and Michelson H., 1991, A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances, Journal of Neurophysiology, 66, 635–650.

    Google Scholar 

  • Tsuji S., Veta T., Kawakami H., Fujii H. and Aihara K., 2007, Bifurcations in two-dimensional Hindmarsh-Rose type model, International Journal of Bifurcation and Chaos, 17, 985–998.

    Article  MATH  ADS  Google Scholar 

  • Wellens T., Shatokhin V. and Buchleitner A., 2004, Stochastic resonance, Rep. Prog. Phys., 67, 45–105.

    Article  ADS  Google Scholar 

  • Wiesenfeld K. and Moss F., 1995, Stochastic resonance and the benefits of noise: from ice ages to crayfish and Squids, Nature, 373, 33–36.

    Article  ADS  Google Scholar 

  • Wu Y., Xu J.X. and He M., 2005, Synchronous behaviors of Hindmarsh-Rose neu rons with chemical coupling, In: Lecture in Computer Science, 3610, 508–511.

    Article  Google Scholar 

  • Xie Y., Aihara K. and Kang Y.M., 2008a, Change in types of neuronal excitability via bifurcation control, Physical Review E, 021917.

    Google Scholar 

  • Xie Y., Chen L., Kang Y.M. and Aihara K., 2008b, Controlling the onset of Hopf bifurcation in the Hodgkin-Huxley model, Physical Review E, 77, 061921.

    Article  ADS  MathSciNet  Google Scholar 

  • Xie Y., Duan Y.B., Xu J.X., Kang Y.M. and Hu S.J., 2003a, Parabolic bursting induced by Veratridine in rat injured sciatic nerves, Acta Biochimica et Biophysica Sinica, 35, 806–810.

    Google Scholar 

  • Xie Y., Duan Y.B., Xu J.X., Kang Y.M. and Hu S.J., 2003b, The interspike interval increases gradually: why? Acta Biophysica Sinica, 19, 401–408.

    Google Scholar 

  • Xie Y., Xu J.X. and Hu S.J., 2004a, A novel dynamical mechanism of neural excitability for integer multiple spiking, Chaos, Solitons and Fractals, 21, 177–184.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Xie Y., Xu J.X., Hu S.J., Kang Y.M., Yang H.J. and Duan Y.B., 2004b, Dynamical mechanisms for sensitive response of aperiodic firing cells to external stimulation, Chaos, Solitons and Fractals, 22, 151–160.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Xie Y., Xu J.X., Kang Y.M., Hu S.J. and Duan Y.B., 2005, Critical amplitude curves for different periodic stimuliand different dynamical mechanisms of excitability, Communications in Nonlinear Science and Numerical Simulation, 10, 823–832.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Xing J.L., Hu S.J., Xu H., Han S. and Wan Y.H., 2001, Subthreshold membrane oscillations underlying integer multiples firing from injured sensory neurons, Neuroreport, 12, 1311–1313.

    Article  Google Scholar 

  • Xu J.X., Gong Y.F., Ren W., Hu S.J., and Wang F.Z., 1997, Propagation of periodic and chaotic action potential trains along nerve fibers, Physica D, 100, 212–224.

    Article  MATH  ADS  Google Scholar 

  • Yang H.J., Hu S.J., Jian Z., Wan Y.H., and Long K.P., 2000, Relationship between the sensitivity to tetraethylammonium and firing patters of injured dorsal root ganglion neurons, Acta Physiologica Sinica, 52, 39S–401.

    Google Scholar 

  • Yang H.J., Hu S.J., Han S., Liu G.P., Xie Y. and Xu J.X., 2002, Relation between responsiveness to neurotransmitters and complexity of epileptiform activity in rat hippocampal CAl neurons, Epilepsia, 43, 1330–1336.

    Article  Google Scholar 

  • Yang Z.Q., Lu Q.S., Gu H.G. and Ren W., 2002, Integer multiple spiking in the stochastic Chay model and its dynamical generation mechanism, Physics Letter A, 299, 499–506.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Zhang G.J., Xu J.X., Wang J., Yue Z.F., Liu C.B., Yao H. and Wang X.B., 2008, The Mechanism of Bifurcation-Dependent Coherence Resonance of Morris-Lecar Neuron Model, In: Advances in Cognitive Neurodynamics, Proceedings, 83–89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xie, Y., Xu, JX. (2011). The Complexity in Activity of Biological Neurons. In: Luo, A.C.J., Sun, JQ. (eds) Complex Systems. Nonlinear Physical Science, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17593-0_6

Download citation

Publish with us

Policies and ethics