Skip to main content

Differential-Delay Equations

  • Chapter
Complex Systems

Part of the book series: Nonlinear Physical Science ((NPS,volume 0))

Abstract

Periodic motions in DDE (Differential-Delay Equations) are typically created in Hopf bifurcations. In this chapter we examine this process from several points of view. Firstly we use Lindstedt’s perturbation method to derive the Hopf Bifurcation Formula, which determines the stability of the periodic motion. Then we use the Two Variable Expansion Method (also known as Multiple Scales) to investigate the transient behavior involved in the approach to the periodic motion. Next we use Center Manifold Analysis to reduce the DDE from an infinite dimensional evolution equation on a function space to a two dimensional ODE (Ordinary Differential Equation) on the center manifold, the latter being a surface tangent to the eigenspace associated with the Hopf bifurcation. Finally we provide an application to gene copying in which the delay is due to an observed time lag in the transcription process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Camacho E., Rand R. and Howland, H., 2004, Dynamics of two van der Pol oscillators coupled via a bath, International J. Solids and Structures, 41, 2133–2143.

    Article  MATH  MathSciNet  Google Scholar 

  • Campbell S.A., Belair J., Ohira T. and Milton J., 1995, Complex dynamics and multistability in a damped harmonic oscillator with delayed negative feedback, Chaos, 5, 640–645.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Casal A. and Freedman M., 1980, A Poincare-Lindstedt approach to bifurcation problems for differential-delay equations, IEEE Transactions on Automatic Control, 25, 967–973.

    Article  MATH  MathSciNet  Google Scholar 

  • Cole J.D., 1968, Perturbation Methods in Applied Mathematics, Blaisdell, Waltham, MA.

    MATH  Google Scholar 

  • Das S.L. and Chatterjee A., 2002, Multiple scales without center manifold reductions for delay differential equations near Hopf bifurcations, Nonlinear Dynamics, 30, 323–335.

    Article  MATH  MathSciNet  Google Scholar 

  • Das S.L. and Chatterjee A., 2005, Second order multiple scales for oscillators with large delay, Nonlinear Dynamics, 39, 375–394.

    Article  MATH  MathSciNet  Google Scholar 

  • Guckenheimer J. and Holmes P., 1983, Nonlinear Oscillations, Dynamical Systems; and Bifurcations of Vector Fields, Springer, New York.

    MATH  Google Scholar 

  • Hassard B.D., Kazarinoff N.D. and Wan Y-H., 1981, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Kalmar-Nagy T., Stepan G. and Moon F.C., 2001, Subcritical Hopf bifurcation in the delay equation model for machine tool vibrations, Nonlinear Dynamics, 26, 121–142.

    Article  MATH  MathSciNet  Google Scholar 

  • Kot M., 1979, Delay-differential Models and the Effects of Economic Delays on the Stability of Open-access Fisheries, M.S. thesis, Cornell University

    Google Scholar 

  • Mahaffy J.M., 1988, Genetic control models with diffusion and delays, Mathematical Biosciences, 90, 519–533.

    Article  MATH  MathSciNet  Google Scholar 

  • Mahaffy J.M., Jorgensen D.A. and Vanderheyden R.L., 1992, Oscillations in a model of repression with external control, J. Math. Biology, 30, 669–691.

    Article  MATH  MathSciNet  Google Scholar 

  • Mocek W.T., Rudbicki R. and Voit E.O., 2005, Approximation of delays in biochemical systems, Mathematical Biosciences, 198, 190–216.

    Article  MATH  MathSciNet  Google Scholar 

  • Monk N.A.M., 2003, Oscillatory expreSSIon of Hes1, p53, and NF-KB driven by transcriptional time delays, Current Biology, 13, 1409–1413.

    Article  Google Scholar 

  • Nayfeh A.H., 1973, Perturbation Methods, Wiley, New York.

    MATH  Google Scholar 

  • Nayfeh A.H., 2008, Order reduction of retarded nonlinear systems — the method of multiple scales versus center-manifold reduction, Nonlinear Dynamics, 51, 483–500.

    Article  MATH  MathSciNet  Google Scholar 

  • Rand R.H. and Armbruster D., 1987, Perturbation Methods, Bifurcation Theory and Computer Algebra, Springer, New York.

    Book  MATH  Google Scholar 

  • Rand R.H., 2005, Lecture Notes on Nonlinear Vibrations (version 52), available online at http://audiophile.tam.comell.edu/randdocs.

    Google Scholar 

  • Rand R. and Verdugo A., 2007, Hopf Bifurcation formula for first order differentialdelay equations, Communications in Nonlinear Science and Numerical Simulation, 12, 859–864.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Sanders J.A. and Verhulst F., 1985, Averaging Methods in Nonlinear Dynamical Systems, Springer, New York.

    MATH  Google Scholar 

  • Stepan G., 1989, Retarded Dynamical Systems: Stability and Characteristic Functions, Longman Scientific and Technical, Essex.

    MATH  Google Scholar 

  • Verdugo A. and Rand R., 2008a, Hopf bifurcation in a DDE model of gene expression, Communications in Nonlinear Science and Numerical Simulation, 13, 235–242.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Verdugo A. and Rand R., 2008b, Center manifold analysis of a DDE model of gene expression, Communications in Nonlinear Science and Numerical Simulation, 13, 1112–11120.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Wang H. and Hu H., 2003, Remarks on the perturbation methods in solving the second-order delay differential equations, Nonlinear Dynamics, 33, 379–398.

    Article  MATH  Google Scholar 

  • Wirkus S. and Rand R., 2002, Dynamics of two coupled van der Pol oscillators with delay coupling, Nonlinear Dynamics, 30, 205–221.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rand, R. (2011). Differential-Delay Equations. In: Luo, A.C.J., Sun, JQ. (eds) Complex Systems. Nonlinear Physical Science, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17593-0_3

Download citation

Publish with us

Policies and ethics