Skip to main content

The Structure, Morphology, and Mechanical Properties of Thermoplastic Composites with Ligncellulosic Fiber

  • Chapter
  • First Online:
Cellulose Fibers: Bio- and Nano-Polymer Composites

Abstract

This chapter discusses the supermolecular structure and interphase phenomenon in composite-reinforced natural fibers. We analyzed the formation of the polymorphic forms in polypropylene (PP) matrix. It was found that in the composites with natural fibers, the hexagonal form arises when the fibers are in motion in relation to the polymeric matrix. of Moving temperature of the natural fibers was found to have a strong influence on the content of the hexagonal modification. If the temperature of the moving fibers is low, then the amount of β-PP significantly increases. The content of β-PP also depends on the rate of the moving of fibers; however, the chemical modification of the natural fiber’s surface reduces the content of this form. Also, the processing conditions play an important role for structural changes in PP matrix.

Further, this chapter provides a survey about the formation of a transcrystalline layer in the composite system. The occurrence of transcrystallization was found to strongly depend on the type of chemical treatment of the fiber surface. Predominant nucleation ability was found for unmodified fibers. However, chemical modification of fiber surface slightly depressed the nucleation of polypropylene matrixes.

The influence of physical and chemical treatment methods of natural fibers on mechanical properties was analyzed also. Additionally, the mechanical and other physical properties of the composite are generally dependent on the length, content, and dispersion of fibrous filler and processing parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turner-Jones A, Aizlewood JM, Beckett DR (1964) Crystalline forms of isotactic polypropylene. Makromol Chem 75:134–158

    Article  CAS  Google Scholar 

  2. Garbarczyk J (1985) A study on the mechanism of transition β → α in isotactic polypropylene. Makromol Chem 186:2145–2151

    Article  CAS  Google Scholar 

  3. Borysiak S, Garbarczyk J, Paukszta D (2007) Polish Patent P-348,342

    Google Scholar 

  4. Varga J, Karger-Kocsis (1993) Direct evidence of row-nucleated cylindritic crystallization in glass fiber-reinforced polypropylene composites. J Polym Bull 30:105–110

    Article  CAS  Google Scholar 

  5. Varga J, Karger-Kocsis J (1994) The difference between transcrystallization and shear-induced cylindritic crystallization in fibre-reinforced polypropylene composites. J Mater Sci Lett 13:1069–1071

    CAS  Google Scholar 

  6. Hoecker F, Karger-Kocsis J (1995) On the effects of processing conditions and interphase of modification on the fiber/matrix load transfer in single fiber polypropylene composites. J Adhes 52:81–100

    Article  CAS  Google Scholar 

  7. Borysiak S (2000) PhD Thesis, Faculty of Chemical Technology, Poznan University of Technology, CT PUT

    Google Scholar 

  8. Garbarczyk J, Borysiak S (2004) Influence of the pulling of embedded natural fibres on the crystal structure of polypropylene matrix. Int J Polym Mater 53:725–733

    Article  CAS  Google Scholar 

  9. Garbarczyk J, Paukszta D, Borysiak S (2002) Polymorphism of isotactic polypropylene in presence of additives, in blends and in composites. J Macromol Sci Part B Phys B 41:1267–1278

    Article  Google Scholar 

  10. Paukszta D, Borysiak S (2005) Structure of isotactic polypropylene in composites with natural fibres obtained in various processing methods. Fibres & Textiles in Eastern Europe 13:107–109

    Google Scholar 

  11. Sanadi R, Caulfield DF (2000) Transcrystalline interphases in natural fiber – PP composites: effect of coupling agent. Compos Interface 7:31–43

    Article  CAS  Google Scholar 

  12. Suzhou Y, Rials TG, Wolcott MP (1999) Crystallization behavior of polypropylene and its effect on woodfiber composite properties. pp. 139–146. Proceedings of 5th International Conference on Wood-Plastic Composites,: Forest Products Society (Eds) Madison, WI, USA

    Google Scholar 

  13. Son SJ, Lee YM, Im SS (2000) Transcrystalline morphology and mechanical properties in polypropylene composites containing cellulose treated with sodium hydroxide and cellulose. J Mater Sci 35:5767–5778

    Article  CAS  Google Scholar 

  14. Lenes M, Gregersen W (2006) Effect of surface chemistry and topography of sulphite fibers on transcrystallinity of polypropylene. Cellulose 13:345–355

    Article  CAS  Google Scholar 

  15. Sangyeob L, Shupe TF, Groom LH, Chung YH (2007) Thermomechanical pulp fiber surface modification for enhancing the interfacial adhesion with polypropylene. Wood Fiber Sci 39:424–433

    Google Scholar 

  16. Zafeiropoulos NE, Baillie CA, Matthews FL (2001) A study of transcrystallinity and its effect on the interface in flax fibre reinforced. Composites 32:525–543

    Article  Google Scholar 

  17. Arbelaiz A, Fernandez B, Ramos JA, Mondragon I (2006) Thermal and crystallization studies of short flax fibre reinforced polypropylene matrix composites: effect of treatments. Thermochim Acta 440:111–121

    Article  CAS  Google Scholar 

  18. Nekkaa S, Guessoum M, Chebira F, Haddaoui N (2008) Effect of fibre content and chemical treatment on the thermal properties of Spartium junceum fiber-reinforced polypropylene composites. Int J Polym Mater 57:771–784

    Article  CAS  Google Scholar 

  19. Mi Y, Chen X, Guo Q (1997) Bamboo fiber-reinforced polypropylene composites: crystallization and interfacial morphology. J App Polym Sci 64:1267–1273

    Article  CAS  Google Scholar 

  20. Felix JM, Gatenholm P (1994) Effect of transcrystalline morphology on interfacial adhesion in cellulose/polypropylene composites. J Mater Sci 29:3043–3049

    Article  CAS  Google Scholar 

  21. Gray DG (2008) Transcrystallization of polypropylene at cellulose nanocrystal surfaces. Cellulose 15:297–301

    Article  CAS  Google Scholar 

  22. Yi C, Petermann J, Wittich H (1997) Transcrystallization in fiber-reinforced isotactic polypropylene composites in temperature gradient. J App Polym Sci 65:67–75

    Article  Google Scholar 

  23. Thomason JL, Rooyen AA (1992) Transcrystallized interphase in thermoplastic composites. J Mater Sci 27:889–896

    Article  CAS  Google Scholar 

  24. Grozdanov A, Bogoeva-Gaceva G (2003) Transcrystallization of maleated polypropylene In the presence of various carbon fibers. Polym Bull 50:397–404

    Article  CAS  Google Scholar 

  25. Zhang S, Minus ML, Zhu L, Wong CP, Kumar S (2008) Polymer transcrystallinity by carbon nanotubes. Polymer 49:1356–1364

    Article  CAS  Google Scholar 

  26. Naiki M, Fukui Y, Matsumura T, Nomura T (2001) The effect of talc on the crystallization of isotactic polypropylene. J Appl Polym Sci 79:1693–1703

    Article  CAS  Google Scholar 

  27. Huihui L, Liu J, Wang D, Yan S (2003) A comparison study on the homogeneity and heterogeneity fiber induced crystallization of isotactic polypropylene. Colloid Polym Sci 281:973–979

    Article  Google Scholar 

  28. Huihui L, Liu J, Wang D, Yan S (2003) Optical microscopic study on the morphologies of isotactic polypropylene induced by its homogeneity fibers. Macromolecules 36:2802–2807

    Article  Google Scholar 

  29. Quillin DT, Canfiled DF, Koutsky JA (1993) Crystallinity in the polypropylene/cellulose system. I nucleation and crystalline morphology. J App Polym Sci 50:1187–1194

    Article  CAS  Google Scholar 

  30. Borysiak S (2007) Determination of nucleation ability of wood for non-isothermal crystallisation of polypropylene. J Therm Anal Calorim 88:455–462

    Article  CAS  Google Scholar 

  31. Gray D (1974) Polypropylene transcrystallization at the surface of cellulose fibre. J Polym Sci 12:509–515

    CAS  Google Scholar 

  32. Son SJ, Lee YM, Im SS (2002) Transcrystalline morphology and mechanical properties in polypropylene composites containing cellulose treated with sodium hydroxide and cellulose. J Mater Sci 35:5767–5778

    Article  Google Scholar 

  33. Borysiak S, Doczekalska B (2009) The influence of chemical modification of wood on its nucleation ability in polypropylene composite. Polymers 54:820–827

    CAS  Google Scholar 

  34. Joseph PV, Joseph K, Thomas S, Pillai CKS, Prasad VS, Groeninckx G, Sarkissova M (2003) The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Composites 34:253–266

    Article  Google Scholar 

  35. Manchado MAL, Blagiotti J, Torre L, Kenny JM (2000) Effects of reinforcing fibers on the crystallization of polypropylene. Polym Eng Sci 40:2194–2204

    Article  CAS  Google Scholar 

  36. Yang HS, Gardner DJ, Kim HJ (2009) Viscoelastic and thermal analysis of lignocellulosic material filled polypropylene bio-composites. J Therm Anal Calorim 98:553–558

    Article  CAS  Google Scholar 

  37. Qiu W, Zhang F, Endo T, Hirotsu T (2005) Isocyanate as a compatibilizing agent on the properties of highly crystalline cellulose/polypropylene composites. J Mater Sci 40:3607–3614

    Article  CAS  Google Scholar 

  38. Amash A, Zugenmaier P (2000) Morphology and properties of isotropic and oriented samples of cellulose fibre–polypropylene composites. Polymer 40:1589–1596

    Article  Google Scholar 

  39. Mucha M, Królikowski Z (2003) Application of DSC to study crystallization kinetics of polypropylene containing fillers. J Therm Anal Calorim 74:549–557

    Article  CAS  Google Scholar 

  40. Harper D, Wolcott M (2004) Interaction between coupling agent and lubricants in wood–polypropylene composites. Composites 35:385–394

    Google Scholar 

  41. Lei Y, Wu Q, Yao F, Xu Y (2007) Preparation and properties of recycled HDPE/natural fiber composites. Composites 38:1664–1674

    Article  Google Scholar 

  42. Lei Y, Wu Q, Yao F, Xu Y (2008) Rice straw fiber-reinforced high-density polyethylene composite: effect of fiber type and loading. Ind Crops Prod 28:63–72

    Article  Google Scholar 

  43. Folster T, Michaeli W (1993) Flachs-eine nachwachsende Verstarkungsfaser fur Kunststoffe. Kunststoffe 83:687–691

    Google Scholar 

  44. Mieck KP, Reubmann T (1995) Flachs versus Glas. Kunststoffe 85:366–370

    Google Scholar 

  45. Heijenrath R, Peijs T (1996) Natural-fibre-mat-reinforced thermoplastic composites based on flax fibres and polypropylene. Adv Compos Lett 5:81–85

    Google Scholar 

  46. Peijs T, Garkhail S, Heijenrath R, Van den Oever M, Bos H (1998) Thermoplastic composites based on flax fibres and polypropylene: influence of fibre length and fibre volum fraction on mechanical properties. Macromol Symp 127:193–203

    Article  CAS  Google Scholar 

  47. Mieck KP (1999) Natural fibre/polypropylene composites: an A–Z reference. Chapman & Hall, London

    Google Scholar 

  48. Bisanda ETN, Mwaikambo LY (1997) Potential of Kapok fibre as a substitute of cotton in textiles. J Agric Sci Technol 1:66–71

    Google Scholar 

  49. Miwa M, Nakayama A, Ohsawa T, Hasegawa A (1979) Temperature dependence of the tensile strength of glass fiber-epoxy and glass fiber-unsaturated polyester composites. J Appl Polym Sci 23:2957

    Article  CAS  Google Scholar 

  50. Raj RG, Kokta BV, Maldas D, Daneault C (1989) Use of wood fibers in thermoplastics VII. The effect of coupling agents in polyethylene–wood fiber composites. J Appl Polym Sci 37:1089

    Article  CAS  Google Scholar 

  51. Maldas D, Kokta BV, Daneault C (1989) Influence of coupling agents and treatments on the mechanical properties of cellulose fibre–polystyrene composites. J Appl Polym Sci 37:751–775

    Article  CAS  Google Scholar 

  52. Fu SY, Lauke B (1996) Effects of fiber length and fiber orientation distribution on the tensile strength of short-fiber-reinforced polymers. Compos Sci Technol 56:1179–1190

    Article  CAS  Google Scholar 

  53. Arbelaiz A, Fernandez B, Ramos JA, Retegi A, Llano-Ponte R, Mondragon I (2005) Mechanical properties of short flax fibre bundle/polypropylene composites: influence of matrix/fibre modification, fibre content, water uptake and recycling. Comp Sci Technol 65:1582–1592

    Article  CAS  Google Scholar 

  54. Fung KL, Li RK, Tjong SC (2002) Interface modification on the properties of sisal fibre reinforced polypropylene composites. J Appl Polym Sci 85:169–176

    Article  CAS  Google Scholar 

  55. Tjong SC, Xu Y, Meng YZ (1999) Composites based on maleated polypropylene and methyl cellulosic fiber: mechanical and thermal properties. J Appl Polym Sci 72:1647–1653

    Article  CAS  Google Scholar 

  56. Li TQ, Ng CN, Li RKY (2001) Impact behavior of sawdust/recycled-PP composites. J Appl Polym Sci 81:1420–1428

    Article  CAS  Google Scholar 

  57. Karmaker AC, Youngquist JA (1996) Injection moulding of polypropylene reinforced with short jute fibres. J Appl Polym Sci 62:1147–1151

    Article  CAS  Google Scholar 

  58. Sanadi AR, Caulfield DF, Jacobsaon RE, Rowell RM (1995) Renewable agricultural fibres as reinforcing fillers in plastics: mechanical properties of kenaf fibre–polypropylene composites. Ind Eng Chem Res 34:1889–1896

    Article  CAS  Google Scholar 

  59. Felix JM, Gatenholm P (1991) The nature of adhesion in composites of modified cellulose fibres and polypropylene. J Appl Polym Sci 42:609–620

    Article  CAS  Google Scholar 

  60. Chuai C, Almdal K, Poulsen L, Plackett D (2001) Conifer fibres as reinforcing materials for polypropylene-based composites. J Appl Polym Sci 80:2833–2841

    Article  CAS  Google Scholar 

  61. Olsen DJ (1991) Effectiveness of maleated polypropylenes as coupling agents for wood flour/polypropylene composites. Proceedings of the ANTEC Conference,: Society of Plastics Engineers (Eds) Montreal, Canada

    Google Scholar 

  62. Rana AK, Mandal A, Mitra B, Jacobson R, Rowell R, Banerjee AN (1998) Short jute fiber-reinforced polypropylene composites: effect of compatibilizer. J Appl Polym Sci 69:329–338

    Article  CAS  Google Scholar 

  63. Joly C, Kofman M, Gauthier R (1996) Polypropylene/cellulosic fiber composites: chemical treatment of the cellulose assuming compatibilization between the two materials. J Mol Sci Pure Appl Chem 12:1981–1996

    Article  Google Scholar 

  64. Oksman K, Mathew AP, Langstrom R, Nystrom B, Joseph K (2009) The influence of fibre microstructure on fibre breakage and mechanical properties of natural fibre reinforced polypropylene. Compos Sci Technol 69:1847–1853

    Article  CAS  Google Scholar 

  65. Fung KL, Xing XS, Li RKY, Tjong SC, Mai YW (2003) An investigation on the processing of sisal fibre reinforced polypropylene composites. Compos Sci Technol 63:1255–1258

    Article  CAS  Google Scholar 

  66. Bengtsson M, Baillif M, Oksman K (2007) Extrusion and mechanical properties of highly filled cellulose fibre–polypropylene composites. Compos Part A 38:1922–1931

    Article  Google Scholar 

  67. Arbelaiz A, Cantero G, Fernandez B, Ganan P, Kenny JM, Mondragon I (2005) Flax fiber surface modifications. Effect on fibre physico mechanical and flax/polypropylene interface properties. Polym Compos 26:324–332

    Article  CAS  Google Scholar 

  68. Van den Oever MJA, Bos HL, Van Kemenade JM (2000) Influence of the physical structure of flax fibres on the mechanical properties of flax fibre reinforced polypropylene composites. Appl Compos Mater 7:387–402

    Article  Google Scholar 

  69. Sanadi AR, Feng D, Caulfield DF (1997) Highly filled lignocellulosic reinforced thermoplastic: effect on interphase modification. Proceedings of the 18th RisoInternational Symposium on Materials Science: Polymeric Composites-Expanding the Limits,: SI Andersen, P Brondsted, H Lilholt, A Lystrup, JT Rheinlander, BF Sorensen H (Eds) Toftegaard, Roskilde, Denmark

    Google Scholar 

  70. Hornsby PR, Hinrichsen E, Tarverdi K (1997) Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres. J Mater Sci 32:1009–1015

    Article  CAS  Google Scholar 

  71. Kim SJ, Moon JB, Kim GH, Ha CS (2008) Mechanical properties of polypropylene/natural fiber composites: comparison of wood fiber and cotton fiber. Polym Test 27:801–806

    Article  CAS  Google Scholar 

  72. Raj RG, Kokta D, Daneault C (1989) Effect of chemical treatment of fibers on the mechanical properties of polyethylene–wood fiber composites. J Adhes Sci Technol 3:55–64

    Article  CAS  Google Scholar 

  73. Królikowski W (1998) Tworzywa wzmocnione i włókna wzmacniające. Warsaw, Poland

    Google Scholar 

  74. Bataille P, Ricard L, Sapieha S (1989) Effects of cellulose fibers in polypropylene composites. Polym Compos 10:103–108

    Article  CAS  Google Scholar 

  75. Schneider MH, Brebner KI (1985) Wood–polymer combinations: the chemical modification of wood by alkoxysilane coupling agents. Wood Sci Technol 19:67–73

    Article  CAS  Google Scholar 

  76. Hornsby PR et al (1997) Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres: Part II analysis of composite microstructure and mechanical properties. J Mater Sci 32:1009–1015

    Article  CAS  Google Scholar 

  77. Liu FP, Wolcott MP, Gardner DJ, Rials GT (1994) Characterization of the interface between cellulose fibers and a thermoplastic matrix. Compos Interface 2:419–432

    CAS  Google Scholar 

  78. Zafeiropoulos NE, Williams DR, Baillie CA, Matthews FL (2002) Engineering and characterization of the interface in flax fibre/polypropylene composite materials. Part I. Development and investigation of surface treatments. Compos Part A 33:1083–1093

    Article  Google Scholar 

  79. Borysiak S (2010) Supermolecular structure of wood/polypropylene composites: I. The influence of processing parameters and chemical treatment of the filler. Polym Bull 64:275–290

    Article  CAS  Google Scholar 

  80. Borysiak S, Doczekalska B (2006) Influence of chemical modification of wood on the crystallisation of polypropylene. Holz Roh-Werkst 64:451–454

    Article  CAS  Google Scholar 

  81. Borysiak S, Paukszta D (2008) Mechanical properties of lignocellulosic/polypropylene composites. Mol Cryst Liq Cyst 484:379

    Google Scholar 

  82. Borysiak S et al (2005) Method of preparation of board composites. Poland Patent No 190,405

    Google Scholar 

  83. George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41:1471

    Article  CAS  Google Scholar 

  84. Bledzki AK, Reihmane S, Gassan J (1998) Thermoplastics reinforced with wood fillers: a literature review. Polym Plast Technol Eng 37:451–468

    Article  CAS  Google Scholar 

  85. Joly C, Gauthier R, Escoubes M (1996) Partial masking of cellulosic fiber hydrophilicity for composite applications. Water sorption by chemically modified fibers. Water sorption by chemically modified fibers. J Appl Polym Sci 61:57–69

    Article  CAS  Google Scholar 

  86. Joseph K, Thomas S, Pavithran C (1996) Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer 37:5139–5149

    Article  CAS  Google Scholar 

  87. Zadorecki P, Flodin P (1986) Surface modification of cellulose fibers III. Durability of cellulose–polyester composites under environmental aging. J Appl Polym Sci 31:1699–1707

    Article  CAS  Google Scholar 

  88. Joseph PV, Joseph K, Thomas S (1999) Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites. Compos Sci Technol 59:1625–1640

    Article  CAS  Google Scholar 

  89. Kuruvilla J, Sabu C, Pavithran C (1996) Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer 37:5139–5149

    Article  Google Scholar 

  90. George J et al (1996) Melt rheological behaviour of short pineapple fibre reinforced low density polyethylene composites. Polymer 37:5421–5431

    Article  CAS  Google Scholar 

  91. Subramanian RV, Hoffmann R (1983) Study of the kinetic of in situ polymerization in wood by dynamic mechanical measurements. J Polym Sci Polym Chem Ed 12:105–109

    Google Scholar 

  92. Kalinski R, Galeski A, Kryszewski M (1981) Low-density polyethylene filled with chalk and liquid modifier. J Appl Polym Sci 26:4047

    Article  CAS  Google Scholar 

  93. Thomason JL (1999) Mechanical and thermal properties of long glass fiber reinforced polypropylene. In: Karger-Kocsis J (ed) Polypropylene: An A–Z reference. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  94. Hine PJ, Davidson N, Duckett RA, Ward IM (1995) Measuring the fibre orientation and modelling the elastic properties of injection-molded long-fibre-reinforced nylon. Compos Sci Technol 53:125–131

    Article  CAS  Google Scholar 

  95. Pukanszky B (1999) Particulate filled polypropylene composites. In: Karger-Kocsis J (ed) Polypropylene: An A-Z reference. Chapman & Hall, London

    Google Scholar 

  96. Amash A, Zugenmaier P (2000) Morphology and properties of isotropic and oriented samples of cellulose fibre–polypropylene composites. Polymer 41:1589–1596

    Article  CAS  Google Scholar 

  97. Medina L, Schledjewski R, Schlarb A (2009) Process related mechanical properties of press molded natural fiber reinforced polymers. Compos Sci Technol 69:1404–1411

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by University Grant of Poznan University of Technology 32-171/11-DS.

The authors are grateful to Professor Józef Garbarczyk for inspiration and valuable discussion of the material presented in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slawomir Borysiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Borysiak, S., Paukszta, D., Batkowska, P., Mańkowski, J. (2011). The Structure, Morphology, and Mechanical Properties of Thermoplastic Composites with Ligncellulosic Fiber. In: Kalia, S., Kaith, B., Kaur, I. (eds) Cellulose Fibers: Bio- and Nano-Polymer Composites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17370-7_10

Download citation

Publish with us

Policies and ethics