Skip to main content

Robustness of Multi-objective Optimal Solutions to Physical Deterioration through Active Control

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6457))

Abstract

In this paper, we suggest a novel problem within the context of multi objective optimization. It concerns the control of solutions’ performances in multi objective spaces. The motivation for controlling these performances comes from an inspiration to improve the robustness of solutions to physical deterioration. When deterioration occurs, the solution performances degrade. In order to prevent extended degradation and loss of robustness, an active control is implemented. Naturally, in order to enable such a control, the solution (product) should have tunable parameters that would serve as the controlled variables. Optimizing the solution for such a problem means that the tunable parameters should be found and their manipulation determined. Here the optimal solutions and the controller are designed using multi and single objective evolutionary algorithms. The paper is concluded with a discussion on the high potential of the approach for research and real life applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mattson, C.A., Messac, A.: Pareto frontier Based concept selection under uncertainty, with visualization. Optimization and Engineering 6, 85–115 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective evolutionary algorithms, analyzing the State-of-the-Art. Evolutionary Computation 8(2), 12–147 (2000)

    Article  Google Scholar 

  3. Miettinen, K.M.: Non-linear Multiobjective Optimization. International Series on Operations Research and Management Science. Kluwer Academic Publishers, Dordrecht (1999)

    MATH  Google Scholar 

  4. Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  5. Coello, C.A.C.: Recent Trends in Evolutionary Multiobjective Optimization. In: Ajith, A., Jain, L., Robert, G. (eds.) Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, pp. 7–32. Springer, London (2005)

    Chapter  Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and elitist multiobjective genetic algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. Deb, K.: Multi-objective optimization using evolutionary algorithms. J. Wiley & Sons, Ltd., Chichester (2001)

    MATH  Google Scholar 

  8. Phadke, M.S.: Quality engineering using robust design. Prentice-Hall, Englewood Cliffs (1989)

    Google Scholar 

  9. Taguchi, G., Taguchi, S., Tugulum, R.: Taguchi robust engineering: worlds’ best practice for achieving competative advantage in the new millennium. McGraw-Hill, New York (1999)

    Google Scholar 

  10. Branke, J.: Reducing the sampling variance when searching for robust solutions. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2001), pp. 235–242. Morgan Kaufmann Publishers, San Francisco (2001)

    Google Scholar 

  11. Deb, K., Gupta, H.: Searching for robust Pareto-optimal solutions in multi-objective optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 150–164. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Teich, J.: Pareto Font exploration with uncertain objectives. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 314–328. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Luo, L., Kannan, P.K., Besharati, B., Azarm, S.: Design of Robust New Products under Variability: Marketing Meets Design. Journal of Product Innovation Management 22, 177–192 (2005)

    Article  Google Scholar 

  14. Singh, R., Khamba, J.S.: Mathematical modeling of tool wear in ultrasonic machining of titanium. Int. J. Adv. Technol. 4, 573–580 (2009)

    Article  Google Scholar 

  15. Lounis, Z., Madanat, S.M.: Integrating mechanistic and statistical deterioration models for effective bridge management. In: 7th ASCE International Conference on Applications of Advanced Technology in Transportation, Boston, pp. 513–520 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Avigad, G., Eisenstadt, E. (2010). Robustness of Multi-objective Optimal Solutions to Physical Deterioration through Active Control. In: Deb, K., et al. Simulated Evolution and Learning. SEAL 2010. Lecture Notes in Computer Science, vol 6457. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17298-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17298-4_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17297-7

  • Online ISBN: 978-3-642-17298-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics