Skip to main content

Role of Cysteine Cathepsins in Extracellular Proteolysis

  • Chapter
  • First Online:

Part of the book series: Biology of Extracellular Matrix ((BEM,volume 2))

Abstract

Cysteine cathepsins are lysosomal proteases with housekeeping as well as highly specialized functions. Although their activities are optimal at lysosomal acidic and reducing conditions, cathepsins can significantly contribute to the degradation of the extracellular matrix. This may happen under physiological conditions as in cathepsin K-mediated bone resorption or under pathological conditions. Extracellular matrix degradation can occur extracellularly by the secretion of cathepsins or intracellularly following the endocytosis of matrix material. Under physiological conditions, the extracellular matrix is safeguarded against cathepsin activities by its neutral pH, oxidative environment, and high levels of potent endogenous cathepsin inhibitors. However, these barriers can be overcome by pericellular acidification and pathophysiologically reduced anticathepsin concentrations. Whereas matrix metalloproteases are primarily responsible for the homeostasis of the extracellular matrix, cysteine proteases contribute to its destruction under disease conditions. The development of cathepsin inhibitors as anti matrix-degrading drugs appears to be a successful strategy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrahamson M, Alvarez-Fernandez M, Nathanson CM (2003) Cystatins. Biochem Soc Symp: 179–199

    Google Scholar 

  • Aoyagi T, Takeuchi T, Matsuzaki A, Kawamura K, Kondo S (1969) Leupeptins, new protease inhibitors from Actinomycetes. J Antibiot Tokyo 22:283–286

    PubMed  CAS  Google Scholar 

  • Atley LM, Mort JS, Lalumiere M, Eyre DR (2000) Proteolysis of human bone collagen by cathepsin K: characterization of the cleavage sites generating by cross-linked N-telopeptide neoepitope. Bone 26:241–247

    PubMed  CAS  Google Scholar 

  • Baumgrass R, Williamson MK, Price PA (1997) Identification of peptide fragments generated by digestion of bovine and human osteocalcin with the lysosomal proteinases cathepsin B, D, L, H and S. J Bone Miner Res 12:447–455

    PubMed  CAS  Google Scholar 

  • Bervar A, Zajc I, Sever N, Katunuma N, Sloane BF, Lah TT (2003) Invasiveness of transformed human breast epithelial cell lines is related to cathepsin B and inhibited by cysteine proteinase inhibitors. Biol Chem 384:447–455

    PubMed  CAS  Google Scholar 

  • Bossard MJ, Tomaszek TT, Thompson SK, Amegadzies BY, Hannings CR, Jones C, Kurdyla JT, McNulty DE, Drake FH, Gowen M, Levy MA (1996) Proteolytic activity of human osteoclast cathepsin K. Expression, purification, activation, and substrate identification. J Biol Chem 271:12517–12524

    PubMed  CAS  Google Scholar 

  • Brinckerhoff CE, Matrisian LM (2002) Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol 3:207–214

    PubMed  CAS  Google Scholar 

  • Brix K, Dunkhorst A, Mayer K, Jordans S (2008) Cysteine cathepsins: cellular roadmap to different functions. Biochimie 90:194–207

    PubMed  CAS  Google Scholar 

  • Bromme D, Lecaille F (2009) Cathepsin K inhibitors for osteoporosis and potential off-target effects. Expert Opin Investig Drugs 18:585–600

    PubMed  Google Scholar 

  • Bromme D, Okamoto K (1995) Human cathepsin O2, a novel cysteine protease highly expressed in osteoclastomas and ovary molecular cloning, sequencing and tissue distribution. Biol Chem Hoppe Seyler 376:379–384

    PubMed  CAS  Google Scholar 

  • Bromme D, Bonneau PR, Lachance P, Wiederanders B, Kirschke H, Peters C, Thomas DY, StorerAC, Vernet T (1993) Functional expression of human cathepsin S in Saccharomyces cerevisiae. Purification and characterization of the recombinant enzyme. J Biol Chem 268:4832–4838

    PubMed  CAS  Google Scholar 

  • Brömme D, Okamoto K, Wang BB, Biroc S (1996) Human cathepsin O2, a matrix protein-degrading cysteine protease expressed in osteoclasts. Functional expression of human cathepsin O2 in Spodoptera frugiperda and characterization of the enzyme. J Biol Chem 271:2126–2132

    PubMed  Google Scholar 

  • Brömme D, Li Z, Barnes M, Mehler E (1999) Human cathepsin V functional expression, tissue distribution, electrostatic surface potential, enzymatic characterization, and chromosomal localization. Biochemistry 38:2377–2385

    PubMed  Google Scholar 

  • Buck MR, Karustis DG, Day NA, Honn KV, Sloane BF (1992) Degradation of extracellular-matrix proteins by human cathepsin B from normal and tumour tissues. Biochem J 282(Pt 1):273–278

    PubMed  CAS  Google Scholar 

  • Buhling F, Rocken C, Brasch F, Hartig R, Yasuda Y, Saftig P, Bromme D, Welte T (2004a) Pivotal role of cathepsin K in lung fibrosis. Am J Pathol 164:2203–2216

    PubMed  Google Scholar 

  • Buhling F, Waldburg N, Reisenauer A, Heimburg A, Golpon H, Welte T (2004b) Lysosomal cysteine proteases in the lung: role in protein processing and immunoregulation. Eur Respir J 23:620–628

    PubMed  CAS  Google Scholar 

  • Burrage PS, Mix KS, Brinckerhoff CE (2006) Matrix metalloproteinases: role in arthritis. Front Biosci 11:529–543

    PubMed  CAS  Google Scholar 

  • Butler GS, Overall CM (2009) Updated biological roles for matrix metalloproteinases and new “intracellular” substrates revealed by degradomics. Biochemistry 48:10830–10845

    PubMed  CAS  Google Scholar 

  • Buttle DJ, Saklatvala J, Tamai M, Barrett AJ (1992) Inhibition of interleukin 1-stimulated cartilage proteoglycan degradation by a lipophilic inactivator of cysteine endopeptidases. Biochem J 281:175–177

    PubMed  CAS  Google Scholar 

  • Buttle DJ, Handley CJ, Ilic MZ, Saklatvala J, Murata M, Barrett AJ (1993) Inhibition of cartilage proteoglycan release by a specific inactivator of cathepsin B and an inhibitor of matrix metalloproteinases. Evidence for two converging pathways of chondrocyte-mediated proteoglycan degradation. Arthritis Rheum 36:1709–1717

    PubMed  CAS  Google Scholar 

  • Cheng XW, Kuzuya M, Nakamura K, Di Q, Liu Z, Sasaki T, Kanda S, Jin H, Shi GP, Murohara T, Yokota M, Iguchi A (2006) Localization of cysteine protease, cathepsin S, to the surface of vascular smooth muscle cells by association with integrin alphanubeta3. Am J Pathol 168:685–694

    PubMed  CAS  Google Scholar 

  • Choe Y, Leonetti F, Greenbaum DC, Lecaille F, Bogyo M, Bromme D, Ellman JA, Craik CS (2006) Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J Biol Chem 281:12824–12832

    PubMed  CAS  Google Scholar 

  • Chung L, Shimokawa KI, Nagase H (2000) Structural requirements for collagenolytic activity of matrix metalloproteinase 1 (MMP-1). Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Chung L, Dinakarpandian D, Yoshida N, Lauer-Fields JL, Fields GB, Visse R, Nagase H (2004) Collagenase unwinds triple-helical collagen prior to peptide bond hydrolysis. EMBO J 23:3020–3030

    PubMed  CAS  Google Scholar 

  • Colorado PC, Torre A, Kamphaus G, Maeshima Y, Hopfer H, Takahashi K, Volk R, Zamborsky ED, Herman S, Sarkar PK, Ericksen MB, Dhanabal M, Simons M, Post M, Kufe DW, Weichselbaum RR, Sukhatme VP, Kalluri R (2000) Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res 60:2520–2526

    PubMed  CAS  Google Scholar 

  • Coulibaly S, Schwihla H, Abrahamson M, Albini A, Cerni C, Clark JL, Ng KM, Katunuma N, Schlappack O, Glossl J, Mach L (1999) Modulation of invasive properties of murine squamous carcinoma cells by heterologous expression of cathepsin B and cystatin C. Int J Cancer 83:526–531

    PubMed  CAS  Google Scholar 

  • de Nooijer R, Bot I, von der Thusen JH, Leeuwenburgh MA, Overkleeft HS, Kraaijeveld AO, Dorland R, van Santbrink PJ, van Heiningen SH, Westra MM, Kovanen PT, Jukema JW, van der Wall EE, van Berkel TJ, Shi GP, Biessen EA (2009) Leukocyte cathepsin S is a potent regulator of both cell and matrix turnover in advanced atherosclerosis. Arterioscler Thromb Vasc Biol 29:188–194

    PubMed  Google Scholar 

  • Deaton DN, Tavares FX (2005) Design of cathepsin K inhibitors for osteoporosis. Curr Top Med Chem 5:1639–1675

    PubMed  CAS  Google Scholar 

  • Dejica VM, Mort JS, Laverty S, Percival MD, Antoniou J, Zukor DJ, Poole AR (2008) Cleavage of type II collagen by cathepsin K in human osteoarthritic cartilage. Am J Pathol 173:161–169

    PubMed  CAS  Google Scholar 

  • Desmarais S, Black WC, Oballa R, Lamontagne S, Riendeau D, Tawa P, Duong le T, Pickarski M, Percival MD (2008) Effect of cathepsin k inhibitor basicity on in vivo off-target activities. Mol Pharmacol 73:147–156

    PubMed  CAS  Google Scholar 

  • Drake FH, Dodds RA, James IE, Connor JR, Debouck C, Richardson S, Lee-Rykaczewski E, Coleman L, Rieman D, Barthlow R, Hastings G, Gowen M (1996) Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J Biol Chem 271:12511–12516

    PubMed  CAS  Google Scholar 

  • Engsig MT, Chen QJ, Vu TH, Pedersen AC, Therkidsen B, Lund LR, Henriksen K, Lenhard T, Foged NT, Werb Z, Delaisse JM (2000) Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol 151:879–889

    PubMed  CAS  Google Scholar 

  • Etherington DJ (1972) The nature of the collagenolytic cathepsin of rat liver and its distribution in other rat tissues. Biochem J 127:685–692

    PubMed  CAS  Google Scholar 

  • Etherington DJ, Evans PJ (1977) The action of cathepsin B and collagenolytic cathepsin in the degradation of collagen. Acta Biol Med Ger 36:1555–1563

    PubMed  CAS  Google Scholar 

  • Everts V, Beertsen W, Schroder R (1988) Effects of proteinase inhibitors leupeptin and E-64 on osteoclastic bone resorption. Calcif Tissue Int 43:172–178

    PubMed  CAS  Google Scholar 

  • Everts V, van der Zee E, Creemers L, Beertsen W (1996) Phagocytosis and intracellular digestion of collagen, its role in turnover and remodeling. Histochem J 28:229–245

    PubMed  CAS  Google Scholar 

  • Everts V, Korper W, Jansen DC, Steinfort J, Lammerse I, Heera S, Docherty AJ, Beertsen W (1999) Functional heterogeneity of osteoclasts: matrix metalloproteinases participate in osteoclastic resorption of calvarial bone but not in resorption of long bone. FASEB J 13:1219–1230

    PubMed  CAS  Google Scholar 

  • Everts V, Hou WS, Rialland X, Tigchelaar W, Saftig P, Bromme D, Gelb BD, Beertsen W (2003) Cathepsin K deficiency in pycnodysostosis results in accumulation of non-digested phagocytosed collagen in fibroblasts. Calcif Tissue Int 73:380–386

    PubMed  CAS  Google Scholar 

  • Falgueyret JP, Desmarais S, Oballa R, Black WC, Cromlish W, Khougaz K, Lamontagne S, Masse F, Riendeau D, Toulmond S, Percival MD (2005) Lysosomotropism of basic cathepsin K inhibitors contributes to increased cellular potencies against off-target cathepsins and reduced functional selectivity. J Med Chem 48:7535–7543

    PubMed  CAS  Google Scholar 

  • Felbor U, Dreier L, Bryant RA, Ploegh HL, Olsen BR, Mothes W (2000) Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J 19:1187–1194

    PubMed  CAS  Google Scholar 

  • Fosang AJ, Neame PJ, Last K, Hardingham E, Murphy G, Hamilton JA (1992) The interglobular domain of cartilage aggrecan is cleaved by PUMP, gelatinases, and cathepsin B. J Biol Chem 267:19470–19474

    PubMed  CAS  Google Scholar 

  • Gal S, Willingham MC, Gottesman MM (1985) Processing and lysosomal localization of a glycoprotein whose secretion is transformation stimulated. J Cell Biol 100:535–544

    PubMed  CAS  Google Scholar 

  • Garnero P, Borel O, Byrjalsen I, Ferreras M, Drake FH, McQueney MS, Foged NT, Delmas PD, Delaisse JM (1998) The collagenolytic activity of cathepsin K is unique among mammalian proteinases. J Biol Chem 273:32347–32352

    PubMed  CAS  Google Scholar 

  • Gelb BD, Shi GP, Chapman HA, Desnick RJ (1996) Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273:1236–1238

    PubMed  CAS  Google Scholar 

  • Gocheva V, Joyce JA (2007) Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 6:60–64

    PubMed  CAS  Google Scholar 

  • Gocheva V, Zeng W, Ke D, Klimstra D, Reinheckel T, Peters C, Hanahan D, Joyce JA (2006) Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev 20:543–556

    PubMed  CAS  Google Scholar 

  • Godat E, Herve-Grvepinet V, Veillard F, Lecaille F, Belghazi M, Bromme D, Lalmanach G (2008) Regulation of cathepsin K activity by hydrogen peroxide. Biol Chem 389:1123–1126

    PubMed  CAS  Google Scholar 

  • Gravallese EM (2002) Bone destruction in arthritis. Ann Rheum Dis 61(Suppl 2):ii84–ii86

    PubMed  Google Scholar 

  • Guncar G, Podobnik M, Pungercar J, Strukelj B, Turk V, Turk D (1998) Crystal structure of porcine cathepsin H determined at 2.1 A resolution: location of the mini-chain C-terminal carboxyl group defines cathepsin H aminopeptidase function. Structure 6:51–61

    PubMed  CAS  Google Scholar 

  • Guncar G, Pungercic G, Klemencic I, Turk V, Turk D (1999) Crystal structure of MHC class II-associated p41 Ii fragment bound to cathepsin L reveals the structural basis for differentiation between cathepsins L and S. EMBO J 18:793–803

    PubMed  CAS  Google Scholar 

  • Guncar G, Klemencic I, Turk B, Turk V, Karaoglanovic-Carmona A, Juliano L, Turk D (2000) Crystal structure of cathepsin X: a flip-flop of the ring of His23 allows carboxy-monopeptidase and carboxy-dipeptidase activity of the protease. Structure 8:305–313

    PubMed  CAS  Google Scholar 

  • Hanada K, Tamai M, Yamagish M (1978) Isolation and characterization of E-64, a new thiol protease inhibitor. Agric Biol Chem 42:523–528

    CAS  Google Scholar 

  • He GA, Luo JX, Zhang TY, Wang FY, Li RF (2003) Canstatin-N fragment inhibits in vitro endothelial cell proliferation and suppresses in vivo tumor growth. Biochem Biophys Res Commun 312:801–805

    PubMed  CAS  Google Scholar 

  • Holliday LS, Welgus HG, Fliszar CJ, Veith GM, Jeffrey JJ, Gluck SL (1997) Initiation of osteoclast bone resorption by interstitial collagenase. J Biol Chem 272:22053–22058

    PubMed  CAS  Google Scholar 

  • Hou WS, Li Z, Gordon RE, Chan K, Klein MJ, Levy R, Keysser M, Keyszer G, Bromme D (2001) Cathepsin K is a critical protease in synovial fibroblast-mediated collagen degradation. Am J Pathol 159:2167–2177

    PubMed  CAS  Google Scholar 

  • Hou W-S, Li W, Keyszer G, Weber E, Levy R, Klein MJ, Gravallese EM, Goldring SR, Bromme D (2002) Comparison of cathepsins K and S expression within the rheumatoid and osteoarthritic synovium. Arthritis Rheum 46:663–674

    PubMed  CAS  Google Scholar 

  • Hou WS, Li Z, Buttner FH, Bartnik E, Bromme D (2003) Cleavage site specificity of cathepsin K toward cartilage proteoglycans and protease complex formation. Biol Chem 384:891–897

    PubMed  CAS  Google Scholar 

  • Isemura M, Yosizawa Z, Takahashi K, Kosaka H, Kojima N, Ono T (1981) Characterization of porcine plasma fibronectin and its fragmentation by porcine liver cathepsin B. J Biochem 90:1–9

    PubMed  CAS  Google Scholar 

  • Ishidoh K, Kominami E (1995) Procathepsin L degrades extracellular matrix proteins in the presence of glycosaminoglycans in vitro. Biochem Biophys Res Commun 217:624–631

    PubMed  CAS  Google Scholar 

  • Jedeszko C, Sloane BF (2004) Cysteine cathepsins in human cancer. Biol Chem 385:1017–1027

    PubMed  CAS  Google Scholar 

  • Jordans S, Jenko-Kokalj S, Kuhl NM, Tedelind S, Sendt W, Bromme D, Turk D, Brix K (2009) Monitoring compartment-specific substrate cleavage by cathepsins B, K, L, and S at physiological pH and redox conditions. BMC Biochem 10:23

    PubMed  Google Scholar 

  • Kafienah W, Bromme D, Buttle DJ, Croucher LJ, Hollander AP (1998) Human cathepsin K cleaves native type I and II collagens at the N-terminal end of the triple helix. Biochem J 331:727–732

    PubMed  CAS  Google Scholar 

  • Kamiya T, Kobayashi Y, Kanaoka K, Nakashima T, Kato Y, Mizuno A, Sakai H (1998) Fluorescence microscopic demonstration of cathepsin K activity as the major lysosomal cysteine proteinase in osteoclasts. J Biochem 123:752–759

    PubMed  CAS  Google Scholar 

  • Kamphaus GD, Colorado PC, Panka DJ, Hopfer H, Ramchandran R, Torre A, Maeshima Y, Mier JW, Sukhatme VP, Kalluri R (2000) Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J Biol Chem 275:1209–1215

    PubMed  CAS  Google Scholar 

  • Keeling WB, Armstrong PA, Stone PA, Bandyk DF, Shames ML (2005) An overview of matrix metalloproteinases in the pathogenesis and treatment of abdominal aortic aneurysms. Vasc Endovasc Surg 39:457–464

    Google Scholar 

  • Kim TS, Tasker AS (2006) Non-covalent cathepsin K inhibitors for the treatment of osteoporosis. Curr Top Med Chem 6:355–360

    PubMed  CAS  Google Scholar 

  • Kirschke H, Schmidt I, Wiederanders B (1986) Cathepsin S. The cysteine proteinase from bovine lymphoid tissue is distinct from cathepsin L (EC 3.4.22.15). Biochem J 240:455–459

    PubMed  CAS  Google Scholar 

  • Kitamoto S, Sukhova GK, Sun J, Yang M, Libby P, Love V, Duramad P, Sun C, Zhang Y, Yang X, Peters C, Shi GP (2007) Cathepsin L deficiency reduces diet-induced atherosclerosis in low-density lipoprotein receptor-knockout mice. Circulation 115:2065–2075

    PubMed  CAS  Google Scholar 

  • Konttinen YT, Mandelin J, Li TF, Salo J, Lassus J, Liljestrom M, Hukkanen M, Takagi M, Virtanen I, Santavirta S (2002) Acidic cysteine endoproteinase cathepsin K in the degeneration of the superficial articular hyaline cartilage in osteoarthritis. Arthritis Rheum 46:953–960

    PubMed  CAS  Google Scholar 

  • Lackman RL, Jamieson AM, Griffith JM, Geuze H, Cresswell P (2007) Innate immune recognition triggers secretion of lysosomal enzymes by macrophages. Traffic 8:1179–1189

    PubMed  CAS  Google Scholar 

  • Lah TT, Buck MR, Honn KV, Crissman JD, Rao NC, Liotta LA, Sloan BF (1989) Degradation of laminin by human tumor cathepsin B. Clin Exp Metastasis 7:461–468

    PubMed  CAS  Google Scholar 

  • Lane TF, Sage EH (1994) The biology of SPARC, a protein that modulates cell-matrix interactions. FASEB J 8:163–173

    PubMed  CAS  Google Scholar 

  • Lecaille F, Choe Y, Brandt W, Li Z, Craik CS, Bromme D (2002a) Selective inhibition of the collagenolytic activity of human cathepsin K by altering its S2 subsite specificity. Biochemistry 41:8447–8454

    PubMed  CAS  Google Scholar 

  • Lecaille F, Kaleta J, Bromme D (2002b) Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem Rev 102:4459–4488

    PubMed  CAS  Google Scholar 

  • Levicar N, Strojnik T, Kos J, Dewey RA, Pilkington GJ, Lah TT (2002) Lysosomal enzymes, cathepsins in brain tumour invasion. J Neurooncol 58:21–32

    PubMed  Google Scholar 

  • Li Z, Hou WS, Bromme D (2000) Collagenolytic activity of cathepsin K is specifically modulated by cartilage-resident chondroitin sulfates. Biochemistry 39:529–536

    PubMed  CAS  Google Scholar 

  • Li Z, Hou WS, Escalante-Torres CR, Gelb BD, Bromme D (2002) Collagenase activity of cathepsin K depends on complex formation with chondroitin sulfate. J Biol Chem 277:28669–28676

    PubMed  CAS  Google Scholar 

  • Li Z, Yasuda Y, Li W, Bogyo M, Katz N, Gordon RE, Fields GB, Bromme D (2004) Regulation of collagenase activities of human cathepsins by glycosaminoglycans. J Biol Chem 279:5470–5479

    PubMed  CAS  Google Scholar 

  • Li Z, Kienetz M, Cherney MM, James MN, Bromme D (2008) The crystal and molecular structures of a cathepsin K:chondroitin sulfate complex. J Mol Biol 383:78–91

    PubMed  CAS  Google Scholar 

  • Lijnen HR (2003) Metalloproteinases in development and progression of vascular disease. Pathophysiol Haemost Thromb 33:275–281

    PubMed  Google Scholar 

  • Linnevers C, Smeekens SP, Bromme D (1997) Human cathepsin W, a putative cysteine protease predominantly expressed in CD8+ T-lymphocytes. FEBS Lett 405:253–259

    PubMed  CAS  Google Scholar 

  • Littlewood-Evans A, Kokubo T, Ishibashi O, Inaoka T, Wlodarski B, Gallagher JA, Bilbe G (1997) Localization of cathepsin K in human osteoclasts by in situ hybridization and immunohistochemistry. Bone 20:81–86

    PubMed  CAS  Google Scholar 

  • Liu J, Sukhova GK, Sun JS, Xu WH, Libby P, Shi GP (2004) Lysosomal cysteine proteases in atherosclerosis. Arterioscler Thromb Vasc Biol 24:1359–1366

    PubMed  CAS  Google Scholar 

  • Lutgens E, Lutgens SP, Faber BC, Heeneman S, Gijbels MM, de Winther MP, Frederik P, van der Made I, Daugherty A, Sijbers AM, Fisher A, Long CJ, Saftig P, Black D, Daemen MJ, Cleutjens KB (2006) Disruption of the cathepsin K gene reduces atherosclerosis progression and induces plaque fibrosis but accelerates macrophage foam cell formation. Circulation 113:98–107

    PubMed  CAS  Google Scholar 

  • Lutgens SP, Cleutjens KB, Daemen MJ, Heeneman S (2007) Cathepsin cysteine proteases in cardiovascular disease. FASEB J 21:3029–3041

    PubMed  CAS  Google Scholar 

  • Maciewicz RA, Etherington DJ (1988) A comparison of four cathepsins (B, L, N, and S) with collagenolytic activity from rabbit spleen. Biochem J 256:433–440

    PubMed  CAS  Google Scholar 

  • Maciewicz RA, Wotton SF (1991) Degradation of cartilage matrix components by the cysteine proteinases, cathepsins B and L. Biomed Biochim Acta 50:561–564

    PubMed  CAS  Google Scholar 

  • Maciewicz RA, Wotton SF, Etherington DJ, Duance VC (1990) Susceptibility of the cartilage collagens types II, IX and XI to degradation by the cysteine proteinases, cathepsins B and L. FEBS Lett 269:189–193

    PubMed  CAS  Google Scholar 

  • Mai J, Waisman DM, Sloane BF (2000) Cell surface complex of cathepsin B/annexin II tetramer in malignant progression. Biochim Biophys Acta 1477:215–230

    PubMed  CAS  Google Scholar 

  • Mai J, Sameni M, Mikkelsen T, Sloane BF (2002) Degradation of extracellular matrix protein tenascin-C by cathepsin B: an interaction involved in the progression of gliomas. Biol Chem 383:1407–1413

    PubMed  CAS  Google Scholar 

  • Mason RW (2008) Emerging functions of placental cathepsins. Placenta 29:385–390

    PubMed  CAS  Google Scholar 

  • Mason RW, Massey SD (1992) Surface activation of pro-cathepsin L. Biochem Biophys Res Commun 189:1659–1666

    PubMed  CAS  Google Scholar 

  • Mason RW, Johnson DA, Barrett AJ, Chapman HA (1986) Elastinolytic activity of human cathepsin L. Biochem J 233:925–927

    PubMed  CAS  Google Scholar 

  • Mason RW, Gal S, Gottesman MM (1987) The identification of the major excreted protein (MEP) from a transformed mouse fibroblast cell line as a catalytically active precursor form of cathepsin L. Biochem J 248:449–454

    PubMed  CAS  Google Scholar 

  • McGrath ME (1999) The lysosomal cysteine proteases. Annu Rev Biophys Biomol Struct 28:181–204

    PubMed  CAS  Google Scholar 

  • McGrath ME, Klaus JL, Barnes MG, Bromme D (1997) Crystal structure of human cathepsin K complexed with a potent inhibitor. Nat Struct Biol 4:105–109

    PubMed  CAS  Google Scholar 

  • McGrath ME, Palmer JT, Bromme D, Somoza JR (1998) Crystal structure of human cathepsin S. Protein Sci 7:1294–1302

    PubMed  CAS  Google Scholar 

  • McQuibban GA, Gong JH, Tam EM, McCulloch CA, Clark-Lewis I, Overall CM (2000) Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 289:1202–1206

    PubMed  CAS  Google Scholar 

  • Mellor GW, Thomas EW, Topham CM, Brocklehurst K (1993) Ionization characteristics of the Cys-25/His-159 interactive system and of the modulatory group of papain: resolution of ambiguity by electronic perturbation of the quasi-2-mercaptopyridine leaving group in a new pyrimidyl disulphide reactivity probe. Biochem J 290(Pt 1):289–296

    PubMed  CAS  Google Scholar 

  • Miller EJ, Harris ED Jr, Chung E, Finch JE Jr, McCroskery PA, Butler WT (1976) Cleavage of Type II and III collagens with mammalian collagenase: site of cleavage and primary structure at the NH2-terminal portion of the smaller fragment released from both collagens. Biochemistry 15:787–792

    PubMed  CAS  Google Scholar 

  • Mohamed MM, Sloane BF (2006) Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 6:764–775

    PubMed  CAS  Google Scholar 

  • Molgaard A, Arnau J, Lauritzen C, Larsen S, Petersen G, Pedersen J (2007) The crystal structure of human dipeptidyl peptidase I (cathepsin C) in complex with the inhibitor Gly-Phe-CHN2. Biochem J 401:645–650

    PubMed  Google Scholar 

  • Morrison CJ, Butler GS, Rodriguez D, Overall CM (2009) Matrix metalloproteinase proteomics: substrates, targets, and therapy. Curr Opin Cell Biol 21:645–653

    PubMed  CAS  Google Scholar 

  • Mort JS, Magny MC, Lee ER (1998) Cathepsin B: an alternative protease for the generation of an aggrecan ‘metalloproteinase’ cleavage neoepitope. Biochem J 335:491–494

    PubMed  CAS  Google Scholar 

  • Mudgett JS, Hutchinson NI, Chartrain NA, Forsyth AJ, McDonnell J, Singer II, Bayne EK, Flanagan J, Kawka D, Shen CF, Stevens K, Chen H, Trumbauer M, Visco DM (1998) Susceptibility of stromelysin 1-deficient mice to collagen-induced arthritis and cartilage destruction. Arthritis Rheum 41:110–121

    PubMed  CAS  Google Scholar 

  • Musil D, Zucic D, Turk D, Engh RA, Mayr I, Huber R, Popovic T, Turk V, Towatari T, Katunuma N, Bode W (1991) The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J 10:2321–2330

    PubMed  CAS  Google Scholar 

  • Naghavi M, John R, Naguib S, Siadaty MS, Grasu R, Kurian KC, van Winkle WB, Soller B, Litovsky S, Madjid M, Willerson JT, Casscells W (2002) pH Heterogeneity of human and rabbit atherosclerotic plaques; a new insight into detection of vulnerable plaque. Atherosclerosis 164:27–35

    PubMed  CAS  Google Scholar 

  • Nakagawa TY, Brissette WH, Lira PD, Griffiths RJ, Petrushova N, Stock J, McNeish JD, Eastman SE, Howard ED, Clarke SR, Rosloniec EF, Elliott EA, Rudensky AY (1999) Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. Immunity 10:207–217

    PubMed  CAS  Google Scholar 

  • Newby AC (2006) Do metalloproteinases destabilize vulnerable atherosclerotic plaques? Curr Opin Lipidol 17:556–561

    PubMed  CAS  Google Scholar 

  • Nguyen Q, Mort JS, Roughley PJ (1990) Cartilage proteoglycan aggregate is degraded more extensively by cathepsin L than by cathepsin B. Biochem J 266:569–573

    PubMed  CAS  Google Scholar 

  • Nosaka AY, Kanaori K, Teno N, Togame H, Inaoka T, Takai M, Kokubo T (1999) Conformational studies on the specific cleavage site of Type I collagen (alpha-1) fragment (157–192) by cathepsins K and L by proton NMR spectroscopy. Bioorg Med Chem 7:375–379

    PubMed  CAS  Google Scholar 

  • Overall CM, Blobel CP (2007) In search of partners: linking extracellular proteases to substrates. Nat Rev Mol Cell Biol 8:245–257

    PubMed  CAS  Google Scholar 

  • Page AE, Hayman AR, Andersson LMB, Chambers TJ, Warburton MJ (1993) Degradation of bone matrix proteins by osteoclast cathepsins. Int J Biochem 25:545–550

    PubMed  CAS  Google Scholar 

  • Palermo C, Joyce JA (2008) Cysteine cathepsin proteases as pharmacological targets in cancer. Trends Pharmacol Sci 29:22–28

    PubMed  CAS  Google Scholar 

  • Parikka V, Lehenkari P, Sassi ML, Halleen J, Risteli J, Harkonen P, Vaananen HK (2001) Estrogen reduces the depth of resorption pits by disturbing the organic bone matrix degradation activity of mature osteoclasts. Endocrinology 142:5371–5378

    PubMed  CAS  Google Scholar 

  • Parsons SL, Watson SA, Brown PD, Collins HM, Steele RJ (1997) Matrix metalloproteinases. Br J Surg 84:160–166

    PubMed  CAS  Google Scholar 

  • Perdereau C, Godat E, Maurel MC, Hazouard E, Diot E, Lalmanach G (2006) Cysteine cathepsins in human silicotic bronchoalveolar lavage fluids. Biochim Biophys Acta 1762:351–356

    PubMed  CAS  Google Scholar 

  • Pham CT, Ley TJ (1999) Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc Natl Acad Sci USA 96:8627–8632

    PubMed  CAS  Google Scholar 

  • Platt MO, Ankeny RF, Shi GP, Weiss D, Vega JD, Taylor WR, Jo H (2007) Expression of cathepsin K is regulated by shear stress in cultured endothelial cells and is increased in endothelium in human atherosclerosis. Am J Physiol Heart Circ Physiol 292:H1479–H1486

    PubMed  CAS  Google Scholar 

  • Podgorski I (2009) Future of anticathepsin K drugs: dual therapy for skeletal disease and atherosclerosis? Future Med Chem 1:21–34

    PubMed  CAS  Google Scholar 

  • Podgorski I, Linebaugh BE, Koblinski JE, Rudy DL, Herroon MK, Olive MB, Sloane BF (2009) Bone marrow-derived cathepsin K cleaves SPARC in bone metastasis. Am J Pathol 175:1255–1269

    PubMed  CAS  Google Scholar 

  • Polgar L, Halasz P (1982) Current problems in mechanistic studies of serine and cysteine proteinases. Biochem J 207:1–10

    PubMed  CAS  Google Scholar 

  • Premzl A, Zavasnik-Bergant V, Turk V, Kos J (2003) Intracellular and extracellular cathepsin B facilitate invasion of MCF-10A neoT cells through reconstituted extracellular matrix in vitro. Exp Cell Res 283:206–214

    PubMed  CAS  Google Scholar 

  • Pungercar JR, Caglic D, Sajid M, Dolinar M, Vasiljeva O, Pozgan U, Turk D, Bogyo M, Turk V, Turk B (2009) Autocatalytic processing of procathepsin B is triggered by proenzyme activity. FEBS J 276:660–668

    PubMed  CAS  Google Scholar 

  • Quintanilla-Dieck MJ, Codriansky K, Keady M, Bhawan J, Runger TM (2008) Cathepsin K in melanoma invasion. J Invest Dermatol 128:2281–2288

    PubMed  CAS  Google Scholar 

  • Reddy VY, Zhang QY, Weiss SJ (1995) Pericellular mobilization of the tissue-destructive cysteine proteinases, cathepsins B, L, and S, by human monocyte-derived macrophages. Proc Natl Acad Sci USA 92:3849–3853

    PubMed  CAS  Google Scholar 

  • Riese RJ, Chapman HA (2000) Cathepsins and compartmentalization in antigen presentation. Curr Opin Immunol 12:107–113

    PubMed  CAS  Google Scholar 

  • Riese RJ, Mitchell RN, Villadangos JA, Shi GP, Palmer JT, Karp ER, De Sanctis GT, Ploegh HL, Chapman HA (1998) Cathepsin S activity regulates antigen presentation and immunity. J Clin Invest 101:2351–2363

    PubMed  CAS  Google Scholar 

  • Rodan SB, Duong LT (2008) Cathepsin K - A New Molecular Target for Osteoporosis. IBMS BoneKEy 5:16–24

    Google Scholar 

  • Roshy S, Sloane BF, Moin K (2003) Pericellular cathepsin B and malignant progression. Cancer Metastasis Rev 22:271–286

    PubMed  CAS  Google Scholar 

  • Roughley PJ, Barrett AJ (1977) The degradation of cartilage proteoglycans by tissue proteinases. Proteoglycan structure susceptibility proteolysis. Biochem J 167:629–637

    PubMed  CAS  Google Scholar 

  • Rozhin J, Sameni M, Ziegler G, Sloane BF (1994) Pericellular pH affects distribution and secretion of cathepsin B in malignant cells. Cancer Res 54:6517–6525

    PubMed  CAS  Google Scholar 

  • Runger TM, Quintanilla-Dieck MJ, Bhawan J (2007) Role of cathepsin K in the turnover of the dermal extracellular matrix during scar formation. J Invest Dermatol 127:293–297

    PubMed  Google Scholar 

  • Sameni M, Dosescu J, Moin K, Sloane BF (2003) Functional imaging of proteolysis: stromal and inflammatory cells increase tumor proteolysis. Mol Imaging 2:159–175

    PubMed  Google Scholar 

  • Samokhin AO, Wong A, Saftig P, Bromme D (2008) Role of cathepsin K in structural changes in brachiocephalic artery during progression of atherosclerosis in apoE-deficient mice. Atherosclerosis 200:58–68

    PubMed  CAS  Google Scholar 

  • Sato T, Foged NT, Delaisse JM (1998) The migration of purified osteoclasts through collagen is inhibited by matrix metalloproteinase inhibitors. J Bone Miner Res 13:59–66

    PubMed  CAS  Google Scholar 

  • Satoyoshi E (1992) Therapeutic trials on progressive muscular dystrophy. Intern Med 31:841–846

    PubMed  CAS  Google Scholar 

  • Schedel J, Seemayer CA, Pap T, Neidhart M, Kuchen S, Michel BA, Gay RE, Muller-Ladner U, Gay S, Zacharias W (2004) Targeting cathepsin L (CL) by specific ribozymes decreases CL protein synthesis and cartilage destruction in rheumatoid arthritis. Gene Ther 11:1040–1047

    PubMed  CAS  Google Scholar 

  • Schonefuss A, Wendt W, Schattling B, Schulten R, Hoffmann K, Stuecker M, Tigges C, Lubbert H, Stichel C (2009) Upregulation of cathepsin S in psoriatic keratinocytes. Exp Dermatol

    Google Scholar 

  • Seftor RE, Seftor EA, Koshikawa N, Meltzer PS, Gardner LM, Bilban M, Stetler-Stevenson WG, Quaranta V, Hendrix MJ (2001) Cooperative interactions of laminin 5 gamma2 chain, matrix metalloproteinase-2, and membrane type-1-matrix/metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Res 61:6322–6327

    PubMed  CAS  Google Scholar 

  • Selent J, Kaleta J, Li Z, Lalmanach G, Bromme D (2007) Selective inhibition of the collagenase activity of cathepsin K. J Biol Chem 282:16492–16501

    PubMed  CAS  Google Scholar 

  • Serveau-Avesque C, Martino MF, Herve-Grepinet V, Hazouard E, Gauthier F, Diot E, Lalmanach G (2006) Active cathepsins B, H, K, L and S in human inflammatory bronchoalveolar lavage fluids. Biol Cell 98:15–22

    PubMed  CAS  Google Scholar 

  • Shapiro SD (1994) Elastolytic metalloproteinases produced by human mononuclear phagocytes. Potential roles destructive lung disease. Am J Respir Crit Care Med 150:S160–S164

    PubMed  CAS  Google Scholar 

  • Shi GP, Munger JS, Meara JP, Rich DH, Chapman HA (1992) Molecular cloning and expression of human alveolar macrophage cathepsin S, an elastinolytic cysteine protease. J Biol Chem 267:7258–7262

    PubMed  CAS  Google Scholar 

  • Shi GP, Sukhova GK, Grubb A, Ducharme A, Rhode LH, Lee RT, Ridker PM, Libby P, Chapman HA (1999) Cystatin C deficiency in human atherosclerosis and aortic aneurysms. J Clin Invest 104:1191–1197

    PubMed  CAS  Google Scholar 

  • Shi GP, Bryant RA, Riese R, Verhelst S, Driessen C, Li Z, Bromme D, Ploegh HL, Chapman HA (2000) Role for cathepsin F in invariant chain processing and major histocompatibility complex class II peptide loading by macrophages. J Exp Med 191:1177–1186

    PubMed  CAS  Google Scholar 

  • Shi GP, Sukhova GK, Kuzuya M, Ye Q, Du J, Zhang Y, Pan JH, Lu ML, Cheng XW, Iguchi A, Perrey S, Lee AM, Chapman HA, Libby P (2003) Deficiency of the cysteine protease cathepsin S impairs microvessel growth. Circ Res 92:493–500

    PubMed  CAS  Google Scholar 

  • Silver IA (1975) Measurement of pH and ionic composition of pericellular sites. Philos Trans R Soc Lond B Biol Sci 271:261–272

    PubMed  CAS  Google Scholar 

  • Silver IA, Murrills RJ, Etherington DJ (1988) Microelectrode studies on acid microenvironment beneath adherent macrophages and osteoclasts. Exp Cell Res 175:266–276

    PubMed  CAS  Google Scholar 

  • Sires UI, Schmid TM, Fliszar CJ, Wang ZQ, Gluck SL, Welgus HG (1995) Complete degradation of type X collagen requires the combined action of interstitial collagenase and osteoclast-derived cathepsin B. J Clin Invest 95:2089–2095

    PubMed  CAS  Google Scholar 

  • Somoza JR, Zhan H, Bowman KK, Yu L, Mortara KD, Palmer JT, Clark JM, McGrath ME (2000) Crystal structure of human cathepsin V. Biochemistry 39:12543–12551

    PubMed  CAS  Google Scholar 

  • Somoza JR, Palmer JT, Ho JD (2002) The crystal structure of human cathepsin F and its implications for the development of novel immunomodulators. J Mol Biol 322:559–568

    PubMed  CAS  Google Scholar 

  • Srivastava M, Steinwede K, Kiviranta R, Morko J, Hoymann HG, Langer F, Buhling F, Welte T, Maus UA (2008) Overexpression of cathepsin K in mice decreases collagen deposition and lung resistance in response to bleomycin-induced pulmonary fibrosis. Respir Res 9:54

    PubMed  Google Scholar 

  • Sukhova GK, Shi GP, Simon DI, Chapman HA, Libby P (1998) Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J Clin Invest 102:576–583

    PubMed  CAS  Google Scholar 

  • Sukhova GK, Wang B, Libby P, Pan JH, Zhang Y, Grubb A, Fang K, Chapman HA, Shi GP (2005) Cystatin C deficiency increases elastic lamina degradation and aortic dilatation in apolipoprotein E-null mice. Circ Res 96:368–375

    PubMed  CAS  Google Scholar 

  • Svelander L, Erlandsson-Harris H, Astner L, Grabowska U, Klareskog L, Lindstrom E, Hewitt E (2009) Inhibition of cathepsin K reduces bone erosion, cartilage degradation and inflammation evoked by collagen-induced arthritis in mice. Eur J Pharmacol 613:155–162

    PubMed  CAS  Google Scholar 

  • Szpaderska AM, Frankfater A (2001) An intracellular form of cathepsin B contributes to invasiveness in cancer. Cancer Res 61:3493–3500

    PubMed  CAS  Google Scholar 

  • Tai IT, Tang MJ (2008) SPARC in cancer biology: its role in cancer progression and potential for therapy. Drug Resist Updat 11:231–246

    PubMed  CAS  Google Scholar 

  • Takahashi H, Ishidoh K, Muno D, Ohwada A, Nukiwa T, Kominami E, Kira S (1993) Cathepsin L activity is increased in alveolar macrophages and bronchoalveolar lavage fluid of smokers. Am Rev Respir Dis 147:1562–1568

    PubMed  CAS  Google Scholar 

  • Taleb S, Cancello R, Clément K, Lacasa D (2006) Cathepsin S promotes human preadipocyte differentiation: possible involvement of fibronectin degradation. Endocrinology 147:4950–4959

    PubMed  CAS  Google Scholar 

  • Tezuka K, Tezuka Y, Maejima A, Sato T, Nemoto K, Kamioka H, Hakeda Y, Kumegawa M (1994) Molecular cloning of a possible cysteine proteinase predominantly expressed in osteoclasts. J Biol Chem 269:1106–1109

    PubMed  CAS  Google Scholar 

  • Tolosa E, Li W, Yasuda Y, Wienhold W, Denzin LK, Lautwein A, Driessen C, Schnorrer P, Weber E, Stevanovic S, Kurek R, Melms A, Bromme D (2003) Cathepsin V is involved in the degradation of invariant chain in human thymus and is overexpressed in myasthenia gravis. J Clin Invest 112:517–526

    PubMed  CAS  Google Scholar 

  • Tortorella MD, Pratta M, Liu RQ, Austin J, Ross OH, Abbaszade I, Burn T, Arner E (2000) Sites of aggrecan cleavage by recombinant human aggrecanase-1 (ADAMTS-4). J Biol Chem 275:18566–18573

    PubMed  CAS  Google Scholar 

  • Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5:785–799

    PubMed  CAS  Google Scholar 

  • Turk V, Turk B, Turk D (2001) Lysosomal cysteine proteases: facts and opportunities. EMBO J 20:4629–4633

    PubMed  CAS  Google Scholar 

  • Umezawa H (1982) Low-molecular-weight enzyme inhibitors of microbial origin. Annu Rev Microbiol 36:75–99

    PubMed  CAS  Google Scholar 

  • Vasiljeva O, Dolinar M, Pungercar JR, Turk V, Turk B (2005) Recombinant human procathepsin S is capable of autocatalytic processing at neutral pH in the presence of glycosaminoglycans. FEBS Lett 579:1285–1290

    PubMed  CAS  Google Scholar 

  • Vasiljeva O, Reinheckel T, Peters C, Turk D, Turk V, Turk B (2007) Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr Pharm Des 13:387–403

    PubMed  CAS  Google Scholar 

  • Velasco G, Ferrando AA, Puente XS, Sanchez LM, Lopez-Otin C (1994) Human cathepsin O. Molecular cloning from a breast carcinoma, production of the active enzyme in Escherichia coli, and expression analysis in human tissues. J Biol Chem 269:27136–27142

    PubMed  CAS  Google Scholar 

  • Vinardell T, Dejica V, Poole AR, Mort JS, Richard H, Laverty S (2008) Evidence to suggest that cathepsin K degrades articular cartilage in naturally occurring equine osteoarthritis. Osteoarthritis Cartilage 17:375–383

    PubMed  Google Scholar 

  • Wang B, Sun J, Kitamoto S, Yang M, Grubb A, Chapman HA, Kalluri R, Shi GP (2006) Cathepsin S controls angiogenesis and tumor growth via matrix-derived angiogenic factors. J Biol Chem 281:6020–6029

    PubMed  CAS  Google Scholar 

  • Watari M, Watari H, Nachamkin I, Strauss JF (2000) Lipopolysaccharide induces expression of genes encoding pro-inflammatory cytokines and the elastin-degrading enzyme, cathepsin S, in human cervical smooth-muscle cells. J Soc Gynecol Investig 7:190–198

    PubMed  CAS  Google Scholar 

  • Westling J, Fosang AJ, Last K, Thompson VP, Tomkinson KN, Hebert T, McDonagh T, Collins-Racie LA, LaVallie ER, Morris EA, Sandy JD (2002) ADAMTS4 cleaves at the aggrecanase site (Glu373-Ala374) and secondarily at the matrix metalloproteinase site (Asn341-Phe342) in the aggrecan interglobular domain. J Biol Chem 277:16059–16066

    PubMed  CAS  Google Scholar 

  • Wex T, Buhling F, Wex H, Gunther D, Malfertheiner P, Weber E, Bromme D (2001) Human cathepsin W, a cysteine protease predominantly expressed in NK cells, is mainly localized in the endoplasmic reticulum. J Immunol 167:2172–2178

    PubMed  CAS  Google Scholar 

  • Wiederanders B, Kaulmann G, Schilling K (2003) Functions of propeptide parts in cysteine proteases. Curr Protein Pept Sci 4:309–326

    PubMed  CAS  Google Scholar 

  • Willstaetter R, Bamann E (1929) Ueber die Proteasen der Magenschleimhaut. Hoppe Seylers Z Physiol Chem 180:127–143

    Google Scholar 

  • Wilson S, Hashamiyan S, Clarke L, Saftig P, Mort J, Dejica VM, Bromme D (2009a) Glycosaminoglycan-mediated loss of cathepsin K collagenolytic activity in MPS I contributes to osteoclast and growth plate abnormalities. Am J Pathol 175:2053–2062

    PubMed  CAS  Google Scholar 

  • Wilson SR, Peters C, Saftig P, Bromme D (2009b) Cathepsin K activity-dependent regulation of osteoclast actin ring formation and bone resorption. J Biol Chem 284:2584–2592

    PubMed  CAS  Google Scholar 

  • Xia L, Kilb J, Wex H, Lipyansky A, Breuil V, Stein L, Palmer JT, Dempster DW, Brömme D (1999) Localization of rat cathepsin K in osteoclasts and resorption pits: Inhibition of bone resorption cathepsin K-activity by peptidyl vinyl sulfones. Biol Chem 380:679–687

    PubMed  CAS  Google Scholar 

  • Xin XQ, Gunesekera B, RW M (1992) The specificity and elastinolytic activities of bovine cathepsins S and H. Arch Biochem Biophys 299:334–349

    PubMed  CAS  Google Scholar 

  • Yamashita DS, Dodds RA (2000) Cathepsin K and the design of inhibitors of cathepsin K. Curr Pharm Des 6:1–24

    PubMed  CAS  Google Scholar 

  • Yasuda Y, Li Z, Greenbaum D, Bogyo M, Weber E, Bromme D (2004) Cathepsin V, a novel and potent elastolytic activity expressed in activated macrophages. J Biol Chem 279:36761–36770

    PubMed  CAS  Google Scholar 

  • Yasuda Y, Kaleta J, Bromme D (2005) The role of cathepsins in osteoporosis and arthritis: rationale for the design of new therapeutics. Adv Drug Deliv Rev 57:973–993

    PubMed  CAS  Google Scholar 

  • Zheng T, Zhu Z, Wang Z, Homer RJ, Ma B, Riese RJ Jr, Chapman HA Jr, Shapiro SD, Elias JA (2000) Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema. J Clin Invest 106:1081–1093

    PubMed  CAS  Google Scholar 

  • Zucker S, Cao J, Chen WT (2000) Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 19:6642–6650

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Support: DB: Canada Research Award and Canadian Institutes of Health Research grants: MOP 86586, MOP 6447, and 89974.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Brömme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brömme, D., Wilson, S. (2011). Role of Cysteine Cathepsins in Extracellular Proteolysis. In: Parks, W., Mecham, R. (eds) Extracellular Matrix Degradation. Biology of Extracellular Matrix, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16861-1_2

Download citation

Publish with us

Policies and ethics