Skip to main content

Protein NMR – Introduction

  • Reference work entry
Encyclopedia of Biophysics
  • 1130 Accesses

Introduction

Among the many spectroscopic methods which can be used to study the structure and dynamics of proteins, NMR, while originating in the somewhat recondite phenomenon of nuclear spin angular momentum, has proved to be arguably the most powerful. The power of the method in the study of proteins results largely from the fact that nuclei of the same element in different chemical and magnetic environments give rise to distinct spectral lines (the chemical shift), so that – even in as complex a molecule as a protein – information can be obtained at the level of individual atoms. Furthermore, NMR is sensitive to both the structure and dynamics of molecules as well as their interactions. This has led to an enormous growth in the application of NMR to the study of biological macromolecules since the tentative beginnings some 50 years ago. In the words of Emsley and Feeney (1995): “NMR started as the plaything of the physicists, became the favourite toy of the chemists and finally...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bashir Q, Scanu S, Ubbink M. Dynamics in electron transfer complexes. FEBS J. 2011;278:1391–400.

    CAS  PubMed  Google Scholar 

  • Boehr DD, McElheny D, Dyson HJ, Wright PE. The dynamic energy landscape of dihydrofolate reductase catalysis. Science. 2006;313:1638–42.

    CAS  PubMed  Google Scholar 

  • Cavanagh J, Fairbrother WJ, Palmer III AG, Rance M, Skelton NJ. Protein NMR spectroscopy: principles and practice. 2nd ed. San Diego: Academic; 2007.

    Google Scholar 

  • Clore GM, Iwahara J. Theory, practice and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem Rev. 2009;109:4108–39.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Driscoll P. Macromolecular complexes. In: Lian L-Y, Roberts GCK, editors. Protein NMR spectroscopy: principal techniques and applications. Chichester: Wiley; 2011. p. 270–317.

    Google Scholar 

  • Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev DM, Wolf-Watz M, Bosco DA, et al. Intrinsic dynamics of an enzyme underlies catalysis. Nature. 2007;438:117–21.

    Google Scholar 

  • Ellis J, Gutierrez A, Barsukov IL, Huang W-C, Grossmann JG, Roberts GCK. Domain motion in cytochrome P450 reductase: conformational equilibria revealed by NMR and small-angle X-ray scattering. J Biol Chem. 2009;284:36628–37.

    CAS  PubMed  Google Scholar 

  • Emsley JW, Feeney J. Milestones in the first fifty years of NMR. J Prog Nucl Magn Reson Spectrosc. 1995;28:1–9.

    CAS  Google Scholar 

  • Grzesiek S, Sass HJ. From biomolecular structure to functional understanding: new NMR developments narrow the gap. Curr Opin Struct Biol. 2009;19:585–95.

    CAS  PubMed  Google Scholar 

  • Guntert P. Calculation of structures from NMR restraints. In: Lian L-Y, Roberts GCK, editors. Protein NMR spectroscopy: principal techniques and applications. Chichester: Wiley; 2011. p. 160–92.

    Google Scholar 

  • Hiller S, Wagner G. The role of solution NMR in the structure determinations of VDAC-1 and other membrane proteins. Curr Opin Struct Biol. 2009;19:396–401.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ikura M, Clore GM, Gronenborn AM, Zhu G, Klee CB, Bax A. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science. 1992;256:632–8.

    CAS  PubMed  Google Scholar 

  • Jensen MJ, Ozenne V, Salmon L, Nodet G, Markwick P, Bernadó P, et al. Studying partially folded and intrinsically disordered proteins using NMR residual dipolar couplings. In: Lian L-Y, Roberts GCK, editors. Protein NMR Spectroscopy: Principal Techniques and Applications. Chichester: Wiley; 2011. p. 320–45.

    Google Scholar 

  • Karsisiotis AI. NMR studies of inhibitor binding to metallo-beta-lactamases. University of Leicester; 2008.

    Google Scholar 

  • Kay LE. Solution NMR spectroscopy of supra-molecular systems, why bother? a methyl-TROSY view. J Magn Reson. 2011;210:159–70.

    CAS  PubMed  Google Scholar 

  • Kleckner IR, Foster MP. An introduction to NMR-based approaches for measuring protein dynamics. Biochim Biophys Acta. 2010. doi:10.1016/j.bbapap. 2010.10.012.

    Google Scholar 

  • Korzhnev DM, Religa TL, Banachewicz W, Fersht AR, Kay LE. A transient and low-populated protein-folding intermediate at atomic resolution. Science. 2010;329:1312–6.

    CAS  PubMed  Google Scholar 

  • Lian L-Y, Barsukov IL. Resonance assignments. In: Lian L-Y, Roberts GCK, editors. Protein NMR spectroscopy: principal techniques and applications. Chichester: Wiley; 2011. p. 23–53.

    Google Scholar 

  • Lian L-Y, Roberts GCK, editors. Protein NMR spectroscopy: principal techniques and applications. Chichester: Wiley; 2011.

    Google Scholar 

  • Loria JP, Berlow RB, Watt ED. Characterization of enzyme motions by solution NMR relaxation dispersion. Acc Chem Res. 2008;41:214–21.

    CAS  PubMed  Google Scholar 

  • McDermott A. Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Annu Rev Biophys. 2009;38:385–403.

    CAS  PubMed  Google Scholar 

  • Mittermaier AK, Kay LE. Observing biological dynamics at atomic resolution using NMR. Trends Biochem Sci. 2009;34:601–11.

    CAS  PubMed  Google Scholar 

  • Renault M, Cukkemane A, Baldus M. Solid-state NMR spectroscopy on complex biomolecules. Angew Chem Int Ed Engl. 2010;49:8346–57.

    CAS  PubMed  Google Scholar 

  • Roberts GCK. Structural and dynamic information on ligand binding. In: Lian L-Y, Roberts GCK, editors. Protein NMR spectroscopy: principal techniques and applications. Chichester: Wiley; 2011. p. 222–67.

    Google Scholar 

  • Takeda M, Kainosho M. Isotope labelling. In: Lian L-Y, Roberts GCK, editors. Protein NMR spectroscopy: principal techniques and applications. Chichester: Wiley; 2011. p. 55–82.

    Google Scholar 

  • Vuister GW, Tjandra N, Shen Y, Grishaev A, Stephan Grzesiek S. Measurement of structural restraints. In: Lian L-Y, Roberts GCK, editors. Protein NMR spectroscopy: principal techniques and applications. Chichester: Wiley; 2011. p. 83–157.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon C. K. Roberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 European Biophysical Societies' Association (EBSA)

About this entry

Cite this entry

Roberts, G.C.K. (2013). Protein NMR – Introduction. In: Roberts, G.C.K. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16712-6_303

Download citation

Publish with us

Policies and ethics