Skip to main content

RLPR – An Aspectualizable State Space Representation

  • Chapter
  • First Online:
Qualitative Spatial Abstraction in Reinforcement Learning

Part of the book series: Cognitive Technologies ((COGTECH))

  • 845 Accesses

Abstract

In this chapter, we get to know a qualitative spatial representation tailored for indoor robot navigation tasks. First, the task to be solved is introduced and task space and structure space are identified along with considerations about frames of reference (Sect. 6.1). In Sect. 6.2 we derive a suitable representation for task space based on the relative positions of landmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Crook, P., Hayes, G.: Learning in a state of confusion: Perceptual aliasing in grid world navigation. In: Proceedings of Towards Intelligent Mobile Robots (TIMR). UWE, Bristol (2003)

    Google Scholar 

  • Frank, A.: Qualitative spatial reasoning about cardinal directions. In: Proceedings of the AmericanCongress on Surveying and Mapping (ACSM-ASPRS), pp. 148–167. Baltimore, Maryland, USA (1991)

    Google Scholar 

  • Frank, A.: Qualitative spatial reasoning: Cardinal directions as an example. International Journalof Geographical Information Systems 10(3), 269–290 (1996)

    Google Scholar 

  • Franz, M.O., Sch¨olkopf, B., Mallot, H.A., B¨ulthoff, H.H.: Learning view graphs for robot navigation. Autonomous Robots 5, 111–125 (1998)

    Article  Google Scholar 

  • Frommberger, L.: A qualitative representation of structural spatial knowledge for robot navigationwith reinforcement learning. In: Proceedings of the ICMLWorkshop on Structural KnowledgeTransfer for Machine earning. Pittsburgh, PA, USA (2006)

    Google Scholar 

  • Frommberger, L.: A generalizing spatial representation for robot navigation with reinforcementlearning. In: Proceedings of the Twentieth International Florida Artificial Intelligence ResearchSociety Conference (FLAIRS), pp. 586–591. AAAI Press, Key West, FL, USA (2007b)

    Google Scholar 

  • Frommberger, L.: Learning to behave in space: A qualitative spatial representation for robot navigationwith reinforcement learning. International Journal on Artificial Isntelligence Tools 17(3), 465–482 (2008a)

    Article  Google Scholar 

  • Frommberger, L.: Representing and selecting landmarks in autonomous learning of robot navigation. In: Xiong, C., Liu, H., Huang, Y., Xiong, Y. (eds.) Intelligent Robotics and Applications:First International Conference (ICIRA 2008), Part I, Lecture Notes in Artificial Intelligence,vol. 5314,pp. 488–497. Springer Verlag Berlin Heidelberg (2008b)

    Google Scholar 

  • Goyal, R.: Similarity assessment for cardinal directions between extended spatial objects. Ph.D.thesis, University of Maine (2000)

    Google Scholar 

  • Goyal, R.K., Egenhofer, M.J.: Consistent queries over cardinal directions across different levels ofdetail. In: Tjoa, A.M., Wagner, R., Al-Zobaidie, A. (eds.) Proceedings of the 11th InternationalWorkshop on Database and Expert System Applications, pp. 867–880. IEEE Computer Society,Greenwich, UK (2000)

    Google Scholar 

  • Klatzky, R.L.: Allocentric and egocentric spatial representations: Definition, distinctions, and interconnections. In: Freksa, C., Habel, C., Wender, K.F. (eds.) Spatial Cognition. An Interdisciplinary Approach to Representing and Processing Spatial Knowledge, Lecture Notes in Artificial Intelligence, vol. 1404. Springer (1998)

    Google Scholar 

  • Lazanas, A., Latombe, J.C.: Landmark-based robot navigation. Algorithmica 13(5), 472–501(1995)

    Article  MATH  MathSciNet  Google Scholar 

  • Levinson, S.C.: Space in Language and Cognition: Explorations in Cognitive Diversity, chap. 2. Cambridge University Press (2003)

    Book  Google Scholar 

  • Levitt, T.S., Lawton, D.T.: Qualitative navigation for mobile robots. Artificial Intelligence 44, 305–360 (1990)

    Article  Google Scholar 

  • Mallot, H.A., Franz, M., Sch¨olkopf, B., B¨ulthoff, H.H.: The view-graph approach to visual navigationand spatial memory. In: Proceedings of the 7th International Conference on ArtificialNeural Networks (ICANN), ZKW Bericht. Zentrum f¨ur Kognitionswissenschaften, Universit¨atBremen, Lausanne (1997)

    Google Scholar 

  • Moratz, R.: A granular point position calculus. Tech. Rep. 005, Cognitive Systems – SFB/TR8Spatial Cognition, Universit¨at Bremen (2005)

    Google Scholar 

  • Moratz, R.: Representing relative direction as binary relation of oriented points. In: Proceedings ofthe 17th European Conference on Artificial Intelligence (ECAI). Riva del Garda, Italy (2006)

    Google Scholar 

  • Moratz, R., Dylla, F., Frommberger, L.: A relative orientation algebra with adjustable granularity. In: Proceedings of the Workshop on Agents in Real-Time and Dynamic Environments (IJCAI05). Edinburgh, Scotland (2005)

    Google Scholar 

  • Mukerjee, A., Joe, G.: A qualitative model for space. In: Proceedings of the Eighth NationalConference on Artificial Intelligence (AAAI), pp. 721–727. Morgan Kaufmann, Boston, MA(1990)

    Google Scholar 

  • Musto, A., Stein, K., Schill, K., Eisenkolb, A., Brauer, W.: Qualitative motion representation inegocentric and allocentric frames of reference. In: Freksa, C., Mark, D.M. (eds.) Spatial InformationTheory. Cognitive and Computational Foundations of Geographic Information Science(COSIT), vol. 1661, pp. 461–476. Springer, Berlin (1999)

    Chapter  Google Scholar 

  • Owen, C., Nehmzow, U.: Landmark-based robot navigation. In: From Animals to Animats 5: Proceedings of the Fifth International Conference on Simulation of Adaptive Behavior (SAB). Zurich, Switzerland (1998)

    Google Scholar 

  • Prescott, T.J.: Spatial representation for navigation in animats. Adaptive Behavior 4(2), 85–125 (1996)

    Article  Google Scholar 

  • Presson, C.C., Montello, D.R.: Points of reference in spatial cognition: Stalking the elusive landmark. British Journal of Developmental Psychology 6, 378–381 (1988)

    Google Scholar 

  • Richter, K.F.: A uniform handling of different landmark types in route directions. In: Winter,S., Duckham, M., Kulik, L., Kuipers, B. (eds.) Spatial Information Theory, LNCS 4736, pp.373–389. Springer; Berlin (2007). International Conference COSIT

    Google Scholar 

  • R¨ohrig, R.: Repr¨asentation und Verarbeitung von qualitativem Orientierungswissen. Ph.D. thesis,University of Hamburg (1998)

    Google Scholar 

  • Schlieder, C.: Anordnung und Sichtbarkeit – eine Charakterisierung unvollst¨andigen r¨aumlichenWissens. Ph.D. thesis, Computer Science Department, University of Hamburg, Germany (1991)

    Google Scholar 

  • Schlieder, C.: Representing visible locations for qualitative navigation. In: Proceedings of theWorkshop on Qualitative Reasoning and Decision Technologies (QUARDET), pp. 523–532. Barcelona, Spain (1993)

    Google Scholar 

  • Sloman, A.: Why we need many knowledge representation formalisms. In: Bramer, M.A. (ed.) Research and Development in Expert Systems – Proceedings of the BCS Expert Systems Conference, pp. 163–183. Springer (1985)

    Google Scholar 

  • Sorrows, M.E., Hirtle, S.C.: The nature of landmarks for real and electronic spaces. In: Freksa,C., Mark, D.M. (eds.) Spatial Information Theory: Cognitive and Computational Foundationsof Geographic Information Science. Conference on Spatial Information Theory (COSIT), pp.37–50. Springer, Berlin (1999)

    Chapter  Google Scholar 

  • Wagner, T.: Qualitative sicht-basierte Navigation in unstrukturierten Umgebungen. Ph.D. thesis,Fachbereich 3 (Mathematik und Informatik), Universit¨at Bremen (2006)

    Google Scholar 

  • Wagner, T., Huebner, K.: An egocentric qualitative spatial knowledge representation based on orderinginformation for physical robot navigation. In: Nardi, D., Riedmiller, M., Sammut, C.(eds.) RoboCup 2004: Robot Soccer World Cup VIII, Lecture Notes in Artificial Intelligence,vol. 3276, pp. 134–149. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  • Whitehead, S.D.: Reinforcement learning for the adaptive control of perception and action. Ph.D.thesis, University of Rochester, Department of Computer Science, Rochester, New York (1992)

    Google Scholar 

  • Whitehead, S.D., Ballard, D.H.: Learning to perceive and act by trial and error. Machine Learning 7(1), 45–83 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Frommberger .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frommberger, L. (2010). RLPR – An Aspectualizable State Space Representation. In: Qualitative Spatial Abstraction in Reinforcement Learning. Cognitive Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16590-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16590-0_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16589-4

  • Online ISBN: 978-3-642-16590-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics