Skip to main content

Entropy in Natural Time

  • Chapter
  • First Online:
Natural Time Analysis: The New View of Time

Part of the book series: Springer Praxis Books ((GEOPHYS))

Abstract

Entropy is a concept equally applicable to deterministic as well as stochastic processes. An entropy S is defined in natural time, which exhibits positivity, concavity and Lesche’s (experimental) stability. The entropy S- deduced from analyzing in natural time the time series obtained upon time reversal, is in general different from S, thus the entropy in natural time does satisfy the condition to be “causal” (while the variance κ1 = x 2 x 2 does not). The physical meaning of the change ΔS ≡ S-S- of the entropy in natural time under time reversal, which is of profound importance for the study of the dynamical evolution of a complex system, is discussed. For a fractional Brownian motion time series with self-similarity exponent H close to unity, as well as for an on– off intermittency model when the critical value is approached from below, both values of S and S- are smaller than the entropy Su~ 0.0966 of a “uniform” distribution. When a (natural) time window of length l is sliding through a time series, the entropy S exhibits fluctuations, a measure of which is the standard deviation δS. Complexity measures are introduced that quantify the δS variability upon changing the length scale l as well as the extent to which δS is affected when shuffling the consecutive events randomly (for l = const.). In a similar fashion, complexity measures can be defined for the fluctuations of the quantity ΔS whose standard deviation is designated σ[ΔS]. For the case that Qk are independent and identically distributed positive random variables, as in the case of data shuffled randomly, their σ/μ value is interrelated with δS and σ[ΔS].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For example, see http://planetmath.org/encyclopedia/JensensInequality.html.

  2. Abe, S.: Stability of Tsallis entropy and instabilities of R´enyi and normalized Tsallis entropies: A basis for q-exponential distributions. Phys. Rev. E 66, 046134 (2002)

    Article  Google Scholar 

  3. Abe, S., Kaniadakis, G., Scarfone, A.M.: Stabilities of generalized entropies. J. Phys. A: Math. Gen. 37, 10,513–10,519 (2004)

    Google Scholar 

  4. Balmforth, N.J., Provenzale, A., Spiegel, E.A., Martens, M., Tresser, C., Wu, C.W.: Red spectra from white and blue noise. Proc. R. Soc. London, Ser. B 266, 311–314 (1999)

    Google Scholar 

  5. Beck, C., Schl¨ogl, F.: Thermodynamics of chaotic systems, an introduction. Cambridge University Press, Cambridge, UK (1997)

    Google Scholar 

  6. Beck, C., Schl¨ogl, F.: Thermodynamics of Chaotic Systems: An Introduction. Cambridge University Press, Cambridge, UK (1993)

    Google Scholar 

  7. Dorfman, G.R.: Introduction to Chaos in Nonequilibrium Statistical Mechanics. Cambridge University Press, Cambridge, England (1999)

    Book  Google Scholar 

  8. Eckmann, J.P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617– 656 (1985)

    Article  Google Scholar 

  9. Feller, W.: An Introduction to Probability Theory and Its Applications, Vol. II. Wiley, New York (1971)

    Google Scholar 

  10. Frame, M., Mandelbrot, B., Neger, N.: Fractal Geometry, Yale University, available from http://classes.yale.edu/fractals/, see http://classes.yale.edu/Fractals/RandFrac/fBm/fBm4.html

  11. Gradsteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. Academic Press, San Diego (1980)

    Google Scholar 

  12. Grassberger, P., Procaccia, I.: Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 28, 2591–2593 (1983)

    Article  Google Scholar 

  13. Heagy, J.F., Platt, N., Hammel, S.M.: Characterization of on–off intermittency. Phys. Rev. E 49, 1140–1150 (1994)

    Article  Google Scholar 

  14. Hurst, H.E.: Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 116, 770–808 (1951)

    Google Scholar 

  15. Jizba, P., Arimatsu, T.: Observability of R´enyi’s entropy. Phys. Rev. E 69, 026128 (2004)

    Article  Google Scholar 

  16. Kaniadakis, G., Lissia, M., Scarfone, A.M.: Two-parameter deformations of logarithm, exponential, and entropy: A consistent framework for generalized statistical mechanics. Phys. Rev. E 71, 046128 (2005)

    Article  Google Scholar 

  17. Kaniadakis, G., Scarfone, A.M.: Lesche stability of κ-entropy. Physica A 340, 102–109 (2004)

    Google Scholar 

  18. Lesche, B.: Instabilities of R´enyi entropies. J. Stat. Phys. 27, 419–422 (1982)

    Article  Google Scholar 

  19. Lesche, B.: R´enyi entropies and observables. Phys. Rev. E 70, 017102 (2004)

    Article  Google Scholar 

  20. Maes, C., Netocny, K.: Time-reversal and entropy. J. Stat. Phys. 110, 269–310 (2003)

    Google Scholar 

  21. Majewski, E.: in Thermodynamics of chaos and fractals applied: evolution of the Earth and phase transformations, in Earthquake Thermodynamics and Phase Transformations in the Earth’s Interior, R. Teisseyre and E. Majewski (eds). Academic Press, San Diego (2001)

    Google Scholar 

  22. Mandelbrot, B.B.: Gaussian Self-Affinity and Fractals. Springer-Verlag, New York (2002)

    Google Scholar 

  23. Mandelbrot, B.B., Wallis, J.R.: Some long-run properties of geophysical records. Water Resources Research 5, 321–340 (1969)

    Article  Google Scholar 

  24. Naudts, J.: Continuity of a class of entropies and relative entropies. Rev. Math. Phys. 16, 809–822 (2004)

    Article  Google Scholar 

  25. Pipiras, V., Taqqu, M.S.: Convergence of the Weierstrass-Mandelbrot process to fractional Brownian motion. Fractals 8, 369–384 (2000)

    Article  Google Scholar 

  26. Platt, N., Spiegel, E.A., Tresser, C.: On-off intermittency: A mechanism for bursting. Phys. Rev. Lett. 70, 279–282 (1993)

    Article  Google Scholar 

  27. Pomeau, Y., Manneville, P.: Intermittent transition to turbulence in dissipative dynamical-systems. Commun. Math. Phys. 74, 189–197 (1980)

    Article  Google Scholar 

  28. R´enyi, A.: Probability Theory. North-Holland, Amsterdam (1970)

    Google Scholar 

  29. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall/CRC, Florida (1994)

    Google Scholar 

  30. Szulga, J., Molz, F.: The Weierstrass Mandelbrot process revisited. J. Stat. Phys. 104, 1317–1348 (2001)

    Article  Google Scholar 

  31. Tirnakli, U., Abe, S.: Aging in coherent noise models and natural time. Phys. Rev. E 70, 056120 (2004)

    Article  Google Scholar 

  32. Toniolo, C., Provenzale, A., Spiegel, E.A.: Signature of on–off intermittency in measured signals Phys. Rev. E 66, 066209 (2002)

    Google Scholar 

  33. Tsallis, C.: What should a statistical mechanics satisfy to reflect nature? Physica D 193, 3–34 (2004)

    Article  Google Scholar 

  34. Tsallis, C., Brigatti, E.: Nonextensive statistical mechanics: A brief introduction. Continuum Mech. Thermodyn. 16, 223–235 (2004)

    Article  Google Scholar 

  35. Varotsos, C.A., Tzanis, C.: On the dynamic evolution of the ozone hole area over Antarctica. under review 1, 123,456 (2010)

    Google Scholar 

  36. Varotsos, P.: The Physics of Seismic Electric Signals. TERRAPUB, Tokyo (2005)

    Google Scholar 

  37. Varotsos, P., Alexopoulos, K.: Thermodynamics of Point Defects and their Relation with Bulk Properties. North Holland, Amsterdam (1986)

    Google Scholar 

  38. Varotsos, P.A., Sarlis, N.V., Skordas, E.S.: Spatio-temporal complexity aspects on the interrelation between Seismic Electric Signals and seismicity. Practica of Athens Academy 76, 294–321 (2001)

    Google Scholar 

  39. Varotsos, P.A., Sarlis, N.V., Skordas, E.S.: Long-range correlations in the electric signals that precede rupture. Phys. Rev. E 66, 011902 (2002)

    Article  Google Scholar 

  40. Varotsos, P.A., Sarlis, N.V., Skordas, E.S.: Attempt to distinguish electric signals of a dichotomous nature. Phys. Rev. E 68, 031106 (2003)

    Article  Google Scholar 

  41. Varotsos, P.A., Sarlis, N.V., Skordas, E.S.: Long-range correlations in the electric signals that precede rupture: Further investigations. Phys. Rev. E 67, 021109 (2003)

    Article  Google Scholar 

  42. Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Lazaridou, M.S.: The use of the entropy in the natural time-domain to distinguish electric signals. Practica of Athens Academy 78, 281–298 (2003)

    Google Scholar 

  43. Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Lazaridou, M.S.: Entropy in natural time domain. Phys Rev. E 70, 011106 (2004)

    Article  Google Scholar 

  44. Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Lazaridou, M.S.: Natural entropy fluctuations discriminate similar-looking electric signals emitted from systems of different dynamics. Phys. Rev. E 71, 011110 (2005)

    Article  Google Scholar 

  45. Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Lazaridou, M.S.: Identifying sudden cardiac death risk and specifying its occurrence time by analyzing electrocardiograms in natural time. Appl. Phys. Lett. 91, 064106 (2007)

    Article  Google Scholar 

  46. Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Lazaridou, M.S.: Fluctuations, under time reversal, of the natural time and the entropy distinguish similar looking electric signals of different dynamics. J. Appl. Phys. 103, 014906 (2008)

    Article  Google Scholar 

  47. Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Tanaka, H.K., Lazaridou, M.S.: Attempt to distinguish long-range temporal correlations from the statistics of the increments by natural time analysis. Phys. Rev. E 74, 021123 (2006)

    Article  Google Scholar 

  48. Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Tanaka, H.K., Lazaridou, M.S.: Entropy of seismic electric signals: Analysis in the natural time under time reversal. Phys. Rev. E 73, 031114 (2006)

    Article  Google Scholar 

  49. Varotsos, P.A., Sarlis, N.V., Tanaka, H.K., Skordas, E.S.: See (the freely available) EPAPS Document No. E-PLEEE8-71-081503 originally from P.A. Varotsos, N.V. Sarlis, H.K. Tanaka and E.S. Skordas, Phys. Rev. E 71, 032102 (2005). For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.

  50. Varotsos, P.A., Sarlis, N.V., Tanaka, H.K., Skordas, E.S.: Some properties of the entropy in the natural time. Phys. Rev. E 71, 032102 (2005)

    Article  Google Scholar 

  51. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, UK (1958)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Varotsos, P.A., Sarlis, N.V., Skordas, E.S. (2011). Entropy in Natural Time. In: Natural Time Analysis: The New View of Time. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16449-1_3

Download citation

Publish with us

Policies and ethics