Skip to main content

Abstract

Muscadine grapes are native to the southeastern United States where they have been cultivated for more than 400 years. Muscadine grapes possess one of the highest levels of reactive phenolic compounds among fruit crops. Compared to Vitis vinifera, they also contain much higher amounts of chlorophyll pigment within their photosynthetic tissue. They have a high degree of tolerance to pests and diseases than European grapes (V. vinifera). The production of European grapes is virtually impossible in certain parts of the United States, especially in the southeastern region because of the presence of Pierce’s disease. Resistance characteristics of muscadines to bacterial and fungal diseases, such as Pierce’s Disease and Phylloxera, could play an important role in remediating some of the plagues that the grape industry has been facing for years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alley CJ (1957) Cytogenetics of Vitis H. Chromosome behavior and fertility of some autotetraploid derivatives of Vitis vinifera L. J Hered 48:194–202

    Google Scholar 

  • Anderson PC, Crocker TE, Breman J (2003) The muscadine grape. In: University of Florida, IFAS Extension Newsletter, publication number HS763. http://edis.ifas.ufl.edu

  • Basha SM, Musingo M, Colova VS (2004) Compositional differences in the phenolics compounds of muscadine and bunch grape wines. Afr J Biotechnol 3(10):523–528

    CAS  Google Scholar 

  • Benavente E, Cifuentes M, Dusautoir JC, David J (2008) The use of cytogenetic tools for studies in the crop-to-wild gene transfer scenario. Cytogenet Genome Res 20:3–4

    Google Scholar 

  • Bouquet A (1980) Differences observed in the graft compatibility between some cultivars of Muscadine grapes (Vitis rotundifolia Michx.) and European grape (Vitis vinifera L. cv. Cabernet Sauvignon). Vitis 19:99–104

    Google Scholar 

  • Buck S, Zyprian E (2000) First approaches of molecular mapping in a model population derived from the crossing of the grapevine varieties ‘Regent ’× ‘Lemberger ’. Acta Hortic 528:203–207

    CAS  Google Scholar 

  • Cawthon DL, Morris JR (1983) Uneven ripening of ‘Concord’ grapes. Ark Farm Res 32(1):9

    Google Scholar 

  • Clayton CN (1975) Diseases of muscadine and bunch grapes in North Carolina and their control. NC Agric Exp Stn Bull 451:37

    Google Scholar 

  • Dalbo MA, Weeden NF, Reisch BI (2000a) QTL analysis of disease resistance in interspecific hybrid grapes. Acta Hortic 528:215–219

    Google Scholar 

  • Dalbo MA, Ye GN, Weeden NF, Reisch BI, Steinkellner H, Sefc KM (2000b) A gene controlling sex in grapevines placed on a molecular marker-based genetic map. Genome 43:333–340

    Article  CAS  PubMed  Google Scholar 

  • Daniel O, Meier M, Schlatter J, Frischknecht P (1999) Selected phenolic compounds in cultivated plants: ecologic functions, health implications, and modulation by pesticides. Environ Health Perspect 107:S109–S114

    Article  Google Scholar 

  • Dermen H (1964) Cytogenetics in hybridization of bunch and muscadine-types grapes. Econ Bot 18(2):137–148

    Article  Google Scholar 

  • Dermen H, Harmon FH, Weinberger JH (1970) Fertile hybrids from a cross of a variety of Vitis vinifera with V. rotundifolia. J Hered 61(6):269–272

    Google Scholar 

  • Dhekney SA, Li ZT, Dutt M, Gray DJ (2008) Agrobacterium-mediated transformation of embryogenic cultures and regeneration of transgenic plants in Vitis rotundifolia Michx. (muscadine grape). Plant Cell Rep 77:865–872

    Article  Google Scholar 

  • Dugo G, Saitta M, Giuffrida D, Vilasi F, La Torre GL (2004) Determination of resveratrol and other phenolic compounds in experimental wines from grapes subjected to different pesticide treatments. Ital J Food Sci 16:305–321

    CAS  Google Scholar 

  • Ector BJ, Magee JB, Hegwood CP, Coign MJ (1996) Resveratrol concentration in Muscadine berries, juice, pomace, purees, seeds, and wines. Am J Enol Vitic 47:57–62

    CAS  Google Scholar 

  • Goldy RG (1988) Variation in some yield determining components in muscadine grapes and their correlation to yield. Euphytica 39(1):39–42

    Article  Google Scholar 

  • Grando MS, Bellin D, Madini A, Stefanini M, Pozzi C, Velasco R (2000) Construction of an AFLP and SSR genetic map of Vitis from an interspecific hybrid population. In: Proceedings of plant and animal genome VIII conference, San Diego, California, USA

    Google Scholar 

  • Hardie WJ, Obrien TP (1988) Considerations of the biological significance of some volatile constituents of grape (Vitis spp). Aust J Bot 36:107–117

    Article  Google Scholar 

  • Huang H, Lu J (2000) Variation and correlation of bud breaking, flowering opening and fruit ripening in muscadine grape cultivars. Proc FL State Hortic Soc 113:46–47

    Google Scholar 

  • Hudson TS, Hartle DK, Hursting SD, Nunez NP, Wang TT, Young HA, Arany P, Green JE (2007) Inhibition of prostate cancer growth by muscadine grape skin extract and resveratrol through distinct mechanisms. Cancer Res 67:8396–8405

    Article  CAS  PubMed  Google Scholar 

  • James W, Hardie L (2008) Grapevine biology and adaptation to viticulture. Aust J Grape Wine Res 6:74–81

    Google Scholar 

  • Jelenkovic G, Olmo HP (1968) Cytogenetics of Vitis. III. Partially fertile F1 diploid hybrids between V. vinifera and V. rotundifolia Michx. Vitis 7:8–18

    Google Scholar 

  • Jindal PC (1985) Grape. In: Fruits of India – tropical and subtropical. Naya Prokash, Calcutta, India, pp 219–276

    Google Scholar 

  • Kambiranda D, Vasanthaiah HKN, Basha SM (2010) Relationship between acid invertase activity and sugar content in Grape species. J Food Biochem (in press)

    Google Scholar 

  • Lanier MR, Morris JR (1979) Evaluation of density separation for defining fruit maturities and maturation rates of once-over harvested muscadine grapes. J Am Soc Hortic Sci 104:166–169

    Google Scholar 

  • Le Blanc MR (2006) Cultivar, juice extraction, ultra violet irradiation and storage influence the stilbene content of Muscadine grape (Vitis rotundifolia Michx.). PhD Dissertation, Louisiana State University, Baton Rouge, FL, USA

    Google Scholar 

  • Lee JH, Johnson JV, Talcott ST (2005) Identification of ellagic acid conjugates and other polyphenolics in muscadine grapes by HPLC-ESI-MS. J Agric Food Chem 53:6003–6010

    Article  CAS  PubMed  Google Scholar 

  • Li ZT, Dhekney SA, Dutt M, Van Aman M, Tattersall J, Kelley K, Gray DJ (2007) Isolation and characterization of the 2S albumin gene and promoter from grapevine. Acta Hortic 738:759–765

    CAS  Google Scholar 

  • Lodhi MA, Daly DJ, Ye GN, Weeden NF, Reisch BI (1995) A molecular marker based linkage map of Vitis. Genome 38:786–794

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Schell L, Lamikanra S (1993) Introgression of seedlessness from bunch grapes into muscadine grapes. Proc FL State Hortic Soc 106:122–124

    Google Scholar 

  • Lu J, Schell L, Ramming DW (2000) Interspecific hybridization between Vitis rotundifolia and Vitis Vinifera and evaluation of the hybrids. Acta Hortic 528:481–486

    Google Scholar 

  • Lu J, Huang H, Louime C, Hunter W (2008) Identification of disease defense and stress- related genes in muscadine grape through EST analysis. In: Proceedings of plant and animal genomes XVI conference, San Diego, CA, USA

    Google Scholar 

  • Mallikarjuna A, Bernard P, Gerald D, Simon C, Stover E (2005) Genetic diversity and phylogeographic structure of the genus Vitis: implications for conservation. In: Proceedings of the international conference on crop wild relative conservation and use, Bari, Italy

    Google Scholar 

  • Merdinoglu D, Wiedeman-Merdinoglu S, Coste P, Dumas V, Haetty S, Butterlin G, Greif C (2003) Genetic analysis of downy mildew resistance derived from Muscadinia rotundifolia. Acta Hortic 603:451–456

    CAS  Google Scholar 

  • Meredith CP (2001) Grapevine genetics: probing the past and facing the future. Agric Conspec Sci 66:21–25

    Google Scholar 

  • Mertens-Talcott SU, Percival SS (2005) Ellagic acid and quercetin interact synergistically with resveratrol in the induction of apoptosis and cause transient cell cycle arrest in human leukemia cells. Cancer Lett 218:141–151

    Article  CAS  PubMed  Google Scholar 

  • Mertens-Talcott SU, Lee JH, Percival SS, Talcott ST (2006) Induction of cell death in Caco-2 human colon carcinoma cells by ellagic acid rich fractions from muscadine grapes (Vitis rotundifolia). J Agric Food Chem 54:5336–5343

    Article  CAS  PubMed  Google Scholar 

  • Morris JR (1980) Handling and marketing of muscadine grapes. Fruit South 4(2):12–14

    Google Scholar 

  • Mortensen JA, Andrews CP (1981) Grape cultivar trails and recommended cultivars for Florida viticulture. Proc FL State Hortic Soc 94:328–331

    Google Scholar 

  • Neveln V, Pelczar R (2006) The scoop on Scuppernongs. Summer gardening trends research report. Garden Writers Association Foundation, USA, pp 50–51

    Google Scholar 

  • Olien WC (2001) Introduction to the muscadines. In: Basiouny FM, Himelrick DG (eds) Muscadine grapes. ASHS, Alexandria, VA, USA, pp 1–13

    Google Scholar 

  • Olmo HP (1960) Plant breeding program aided by radiation treatment. Calif Agric 14:4

    Google Scholar 

  • Olmo HP (1971) Vinifera × rotundifolia hybrids as wine grape. Am J Enol Vitic 22:87–91

    Google Scholar 

  • Pastrana-Bonilla E, Akoh CC, Sellappan S, Krewer G (2003) Phenolic content and antioxidant capacity of muscadine grapes. J Agric Food Chem 51:5497–5503

    Article  CAS  PubMed  Google Scholar 

  • Pauquet J, Bouquet A, This P, Adam-Blondon AF (2001) Establishment of a local map of AFLP markers around the powdery mildew resistance gene Run1 in grapevine and assessment of their usefulness for marker assisted selection. Theor Appl Genet 103(8):1201–1210

    Article  CAS  Google Scholar 

  • Poling EB (1996) Muscadine grapes in the home garden. Horticulture Information Leaflet 8203, North Carolina Cooperative Extension Service, North Carolina State University, Raleigh, NC, USA

    Google Scholar 

  • Poling B, Fisk C (2006) Muscadine grapes in the home garden. Department of Horticultural Science, NCSU (Duplin County). http://www.ces.ncsu.edu/depts/hort/hil/hil-8203.html

  • Ren Z, Lamikanra O, Lu J (2000) Identification of a RAPD marker closely linked to the fruit color in muscadine grapes (Vitis rotundifolia I). Acta Hortic 528:263–266

    CAS  Google Scholar 

  • Riaz S, Meredith CP (2000) A microsatellite marker based linkage map of Vitis vinifera. In: Proceedings of plant and animal genome VIII conference, San Diego, CA, USA

    Google Scholar 

  • Riaz S, Vezzulli S, Harbertson ES, Walker MA (2007) Use of molecular markers to correct grape breeding errors and determine the identity of novel sources of resistance to Xiphinema index and Pierce’s disease. Am J Enol Vitic 58(4):494–498

    Google Scholar 

  • Riaz S, Tenscher AC, Smith BP, Ng DA, Walker MA (2008) Use of SSR markers to assess identity, pedigree, and diversity of cultivated muscadine grapes. J Am Soc Hortic Sci 133:559–568

    Google Scholar 

  • Sawazaki HE, Pommer CV, Passos IRDS, Terra MM, Pires EJP (1996) Identification of parents and hybrids among Vitis vinifera and Vitis rotundifolia using isozyme polymorphism and RAPD marker. Bragantia 55(2):221–230

    Article  CAS  Google Scholar 

  • Stoffella PJ, Mortensen JA, Hayslip NC, Brolmann JB (1982) Evaluation of muscadine grape cultivars in South Florida. Proc FL State Hortic Soc 95:90–92

    Google Scholar 

  • Talcott ST, Lee JH (2002) Ellagic acid and flavonoid antioxidant content of muscadine wine and juice. J Agric Food Chem 50:3186–3192

    Article  CAS  PubMed  Google Scholar 

  • Timmons SA, Posluszny U, Gerrath JM (2007) Morphological and anatomical development in the Vitaceae. IX. Comparative ontogeny and phylogenetic implications of Vitis rotundifolia Michx. Can J Bot 85(9):850–859

    Article  Google Scholar 

  • Vasanthaiah HKN, Basha SM (2008) Resveratrol, a versatile natural compound. In: Thangadurai D, Tripathi L, Vasanthaiah HKN, Cantu DJ (eds) Crop improvement and biotechnology. Bioscience, Puliyur, India, pp 157–180

    Google Scholar 

  • Vasanthaiah HKN, Katam R, Basha SM (2007) A new stilbene synthase gene from muscadine (Vitis rotundifolia) grape berry. In: Proceedings of frontiers in the convergence of bioscience and information technologies (FBIT 2007), Korea, pp 87–91

    Google Scholar 

  • Wang Y, Chen J, Lu J, Lamikanra O (1999) Randomly amplified polymorphic DNA analysis of Vitis species and Florida bunch grapes. Sci Hortic 82(1–2):85–94

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemanth K. N. Vasanthaiah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vasanthaiah, H.K.N., Thangadurai, D., Basha, S.M., Biradar, D.P., Kambiranda, D., Louime, C. (2011). Muscadiniana. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16057-8_4

Download citation

Publish with us

Policies and ethics