Skip to main content

Adaptive Modularization of the MAPK Signaling Pathway Using the Multiagent Paradigm

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6239))

Abstract

We utilize an agent-based approach to model the MAPK signaling pathway, in which we capture both individual and group behaviour of the biological entities inside the system. In an effort to adaptively reduce complexity of interactions among the simulated agents, we propose a bottom-up approach to find and group similar agents into a single module which will result in a reduction in the complexity of the system. Our proposed adaptive method of grouping and ungrouping captures the dynamics of the system by identifying and breaking modules adaptively as the simulation proceeds. Experimental results on our simulated MAPK signaling pathway show that our proposed method can be used to identify modules in both stable and periodic systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amigoni, F., Schiaffonati, V.: Multiagent-based simulation in biology a critical analysis. Model-Based Reasoning in Science, Technology, and Medicine 64, 179–191 (2007)

    Article  Google Scholar 

  2. Desmeulles, G., Querrec, G., Redou, P., Kerdelo, S., Misery, L., Rodin, V., Tisseau, J.: The virtual reality applied to biology understanding: The in virtuo experimentation. Expert Syst. Appl. 30(1), 82–92 (2006)

    Article  Google Scholar 

  3. Hoar, R., Penner, J., Jacob, C.: Transcription and evolution of a virtual bacteria culture. In: IEEE Congress on Evolutionary Computation, Canberra, Australia. IEEE Press, Los Alamitos (2003)

    Google Scholar 

  4. Jacob, C., Burleigh, I.: Genetic programming inside a cell. In: Yu, T., Riolo, R.L., Worzel, B. (eds.) Genetic Programming Theory and Practice III, pp. 191–206. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Jacob, C., Barbasiewicz, A., Tsui, G.: Swarms and genes: Exploring λ-switch gene regulation through swarm intelligence. In: CEC 2006, IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada (2006)

    Google Scholar 

  6. Jacob, C., Burleigh, I.: Biomolecular swarms: An agent-based model of the lactose operon. Natural Computing 3(4), 361–376 (2004)

    Article  MathSciNet  Google Scholar 

  7. Gonzalez, P.P., Cardenas, M., Camacho, D., Franyuti, A., Rosas, O., Lagunez-Otero, J.: Cellulat: an agent-based intracellular signalling model. Biosystems 68(2-3), 171–185 (2003)

    Article  Google Scholar 

  8. Khan, S., Makkena, R., McGeary, F., Decker, K., Gillis, W., Schmidt, C.: A multi-agent system for the quantitative simulation of biological networks, pp. 385–392 (2003)

    Google Scholar 

  9. Nayak, L., De, R.K.: An algorithm for modularization of mapk and calcium signaling pathways: comparative analysis among different species. J. Biomed. Inform. 40(6), 726–749 (2007)

    Article  Google Scholar 

  10. Papin, J.A., Reed, J.L., Palsson, B.O.: Hierarchical thinking in network biology: the unbiased modularization of biochemical networks. Trends Biochem. Sci. 29(12), 641–647 (2004)

    Article  Google Scholar 

  11. Schuster, S., Dandekar, T., Fell, D.A.: Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol. 17(2), 53–60 (1999)

    Article  Google Scholar 

  12. Schilling, C.H., Letscher, D., Palsson, B.O.: Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J. Theor. Biol. 203(3), 229–248 (2000)

    Article  Google Scholar 

  13. Burgard, A.P., Nikolaev, E.V., Schilling, C.H., Maranas, C.D.: Flux coupling analysis of genome-scale metabolic network reconstructions. Genome. Res. 14(2), 301–312 (2004)

    Article  Google Scholar 

  14. Price, N.D., Schellenberger, J., Palsson, B.O.: Uniform sampling of steady-state flux spaces: means to design experiments and to interpret enzymopathies. Biophys. J. 87(4), 2172–2186 (2004)

    Article  Google Scholar 

  15. Martins, M., Ferreira Jr., S.C., Vilela, M.: Multiscale models for biological systems. Current Opinion in Colloid & Interface Science 15(1-2), 18–23 (2010)

    Article  Google Scholar 

  16. Erson, E.Z., Cavuşoğlu, M.C.: A software framework for multiscale and multilevel physiological model integration and simulation. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., vol. 2008, pp. 5449–5453 (2008)

    Google Scholar 

  17. Merks, R.M., Glazier, J.A.: A cell-centered approach to developmental biology. Physica A: Statistical Mechanics and its Applications 352(1), 113–130 (2005)

    Article  Google Scholar 

  18. Haken, H.: Synergetics: an introduction: monequilibrium phase transitions and self-organization in physics, chemistry and biology / Hermann Haken. Springer, Berlin (1977)

    Google Scholar 

  19. Walker, D.C., Southgate, J.: The virtual cell–a candidate co-ordinator for ’middle-out’ modelling of biological systems. Briefings in Bioinformatics 10(4), 450–461 (2009)

    Article  Google Scholar 

  20. Bassingthwaighte, J., Chizeck, H., Atlas, L.: Strategies and tactics in multiscale modeling of cell-to-organ systems. Proceedings of the IEEE 94(4), 819–831 (2006)

    Article  Google Scholar 

  21. Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan, New York (1994)

    MATH  Google Scholar 

  22. Huang, C.Y., Ferrell, J.E.: Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA 93(19), 10078–10083 (1996)

    Article  Google Scholar 

  23. Kholodenko, B.N.: Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur. J. Biochem. 267(6), 1583–1588 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sarraf Shirazi, A., von Mammen, S., Jacob, C. (2010). Adaptive Modularization of the MAPK Signaling Pathway Using the Multiagent Paradigm. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds) Parallel Problem Solving from Nature, PPSN XI. PPSN 2010. Lecture Notes in Computer Science, vol 6239. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15871-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15871-1_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15870-4

  • Online ISBN: 978-3-642-15871-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics