Skip to main content

Self-Organization of Steerable Topographic Mappings as Basis for Translation Invariance

  • Conference paper
Artificial Neural Networks – ICANN 2010 (ICANN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6353))

Included in the following conference series:

Abstract

One way to handle the perception of images that change in position (or size, orientation or deformation) is to invoke rapidly changing fiber projections to project images into a fixed format in a higher cortical area. We propose here a model for the ontogenesis of the necessary control structures. For simplicity we limit ourselves to fiber projections between two one-dimensional chains of units. Our system is a direct extension of a mathematical model [1] for the ontogenesis of retinotopy. Our computer experiments are guided by stability analysis and show the establishment of multiple topographic mappings implementing different translations, each projection associated with a single control unit. The model relies on neural signals with appropriate correlation structure, signals that can be generated by the network as spontaneous noise, so that the proposed mechanism could act prenatally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Häussler, A.F., von der Malsburg, C.: Development of retinotopic projections — an analytical treatment. Journal of Theoretical Neurobiology 2, 47–73 (1983)

    Google Scholar 

  2. Selfridge, O.: Pandemonium: a paradigm for learning. In: The mechanisation of thought processes. H.M.S.O., London (1959)

    Google Scholar 

  3. Fukushima, K., Miyake, S., Ito, T.: Neocognitron: A neural network model for a mechanism of visual pattern recognition. IEEE Transactions on Systems, Man and Cybernetics 13(5), 826–834 (1983)

    Google Scholar 

  4. Riesenhuber, M., Poggio, T.: Models of object recognition. Nature Neuroscience 3, 1199–1204 (2000)

    Article  Google Scholar 

  5. Hinton, G.: A parallel computation that assigns canonical object-based frames of reference. In: Proc. of the Seventh IJCAI, Vancouver BC, pp. 683–685 (1981)

    Google Scholar 

  6. Lades, M., Vorbrüggen, J., Buhmann, J., Lange, J., von der Malsburg, C., Würtz, R., Konen, W.: Distortion invariant object recognition in the dynamic link architecture. IEEE Transactions on Computers 42(3), 300–311 (1993)

    Article  Google Scholar 

  7. Olshausen, B., Anderson, C., Van Essen, D.: A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. The Journal of Neuroscience 13(11), 4700–4719 (1993)

    Google Scholar 

  8. Zhu, J., von der Malsburg, C.: Maplets for correspondence-based object recognition. Neural Networks 17(8-9), 1311–1326 (2004)

    Article  Google Scholar 

  9. Lücke, J.: Information Processing and Learning in Networks of Cortical Columns. Shaker Verlag, Aachen (2005) (Dissertation)

    Google Scholar 

  10. Wolfrum, P., Wolff, C., Lücke, J., von der Malsburg, C.: A recurrent dynamic model for correspondence-based face recognition. Journal of Vision 8(7), 1–18 (2008)

    Article  Google Scholar 

  11. Tenenbaum, J., Freeman, W.: Separating style and content with bilinear models. Neural Computation 12, 1247–1283 (2000)

    Article  Google Scholar 

  12. Rao, R.P.N., Ruderman, D.L.: Learning lie groups for invariant visual perception. In: Kearns, M.S., Solla, S.A., Cohn, D. (eds.) Advances in Neural Information Processing Systems, vol. 11, pp. 810–816. MIT Press, Cambridge (1999)

    Google Scholar 

  13. Memisevic, R., Hinton, G.: Unsupervised learning of image transformations. In: CVPR, pp. 1–8 (2007)

    Google Scholar 

  14. Willshaw, D.J., von der Malsburg, C.: A marker induction mechanism for the establishment of ordered neural mappings: its application to the retinotectal problem. Phil. Trans. Roy. Soc. London B B287, 203–243 (1979)

    Article  Google Scholar 

  15. Goodhill, G.: Contributions of theoretical modeling to the understanding of neural map development. Neuron 56, 301–311 (2007)

    Article  Google Scholar 

  16. von der Malsburg, C.: Network self-organization in the ontogenesis of the mammalian visual system. In: Zornetzer, S.F., Davis, J., Lau, C., McKenna, T. (eds.) An Introduction to Neural and Electronic Networks, 2nd edn., pp. 447–462. Academic Press, London (1995)

    Google Scholar 

  17. Bergmann, U., von der Malsburg, C.: Ontogenesis of invariance transformations. In: Computational and Systems Neuroscience, Cosyne (2008)

    Google Scholar 

  18. Bergmann, U., von der Malsburg, C.: Self-organization of topographic bilinear networks for invariant recognition (2010) (in review)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhu, J., Bergmann, U., von der Malsburg, C. (2010). Self-Organization of Steerable Topographic Mappings as Basis for Translation Invariance. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15822-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15822-3_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15821-6

  • Online ISBN: 978-3-642-15822-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics