Skip to main content

Unsupervised Learning of Relations

  • Conference paper
Artificial Neural Networks – ICANN 2010 (ICANN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6352))

Included in the following conference series:

Abstract

Learning processes allow the central nervous system to learn relationships between stimuli. Even stimuli from different modalities can easily be associated, and these associations can include the learning of mappings between observable parameters of the stimuli. The data structures and processing methods of the brain, however, remain very poorly understood. We investigate the ability of simple, biologically plausible processing mechanisms to learn such relationships when the data is represented using population codes, a coding scheme that has been found in a variety of cortical areas. We require that the relationships are learned not just from the point of view of an omniscient observer, but rather the network itself must be able to make effective use of the learned relationship, within the population code representations. Using a form of Hebbian learning, local winner-take-all, and homeostatic activity regulation away from the periphery, we obtain a learning framework which is able to learn relationships from examples and then use the learned relationships for a variety of routine nervous system tasks such as inference, de-noising, cue-integration, and decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carew, T.J., Hawkins, R.D., Kandel, E.: Differential classical conditioning of a defensive withdrawal reflex in aplysia californica. Science 219(4583), 397–400 (1983)

    Article  Google Scholar 

  2. Pavlov, I.: Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex. Oxford University Press, London (1927)

    Google Scholar 

  3. Rescorla, R., Wagner, A.: Variations in the Effectiveness of Reinforcement and Nonreinforcement. In: Classical Conditioning II: Current Research and Theory, pp. 64–99. Appleton-Century-Crofts, New York (1972)

    Google Scholar 

  4. Wagner, A.R., Logan, F.A., Haberlandt, K., Price, T.: Stimulus selection in animal discrimination learning. J. Exp. Psychol. 76(2), 171–180 (1968)

    Article  Google Scholar 

  5. Bailey, C., Kandel, E.: Structural changes accompanying memory storage. Annu. Rev. Physiol. 55, 397–426 (1993)

    Article  Google Scholar 

  6. Bailey, C., Chen, M.: Morphological basis of long-term habituation and sensitization in aplysia. Science 220(4592), 91–93 (1983)

    Article  Google Scholar 

  7. Bailey, C., Chen, M.: Morphological basis of short-term habituation in aplysia. J. Neurosci. 8(7), 2452–2459 (1988)

    Google Scholar 

  8. Kandel, E., Spencer, W.A.: Electrophysiology of hippocampal neurons. ii. after-potentials and repetitive firing. J. Neurophysiol. 24, 243–259 (1961)

    Google Scholar 

  9. Salinas, E., Sejnowski, T.: Gain modulation in the central nervous system: where behavior, neurophysiology, and computation meet. Neuroscientist, 430–440 (2001)

    Google Scholar 

  10. Rutishauser, U., Ross, I., Mamelak, A., Schuman, E.: Human memory strength is predicted by theta-frequency phase-locking of single neurons. Nature (2010) (online first)

    Google Scholar 

  11. Barco, A., Bailey, C.H., Kandel, E.: Common molecular mechanisms in explicit and implicit memory. J. Neurochem. 97(6), 1520–1533 (2006)

    Article  Google Scholar 

  12. Kandel, E.: Cellular mechanisms of learning and the biological basis of individuality. In: Principles of Neural Science, 4th edn., McGraw-Hill, New York (1991)

    Google Scholar 

  13. Martin, S.J., Grimwood, P.D., Morris, R.G.: Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711 (2000)

    Article  Google Scholar 

  14. Felleman, D., Essen, D.V.: Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1(1), 1–47 (1991)

    Article  Google Scholar 

  15. Salinas, E., Abbott, L.F.: Coordinate transformations in the visual system: how to generate gain fields and what to compute with them. Prog. Brain Res. 130, 175–190 (2001)

    Article  Google Scholar 

  16. Pouget, A., Sejnowski, T.: Spatial transformations in the parietal cortex using basis functions. J. Cognitive Neurosci. 9(2), 222–237 (1997)

    Article  Google Scholar 

  17. Zipser, D., Andersen, R.A.: A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331(6158), 679–684 (1988)

    Article  Google Scholar 

  18. Rumelhart, D.E., Hinton, G., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)

    Article  Google Scholar 

  19. Crick, F.: The recent excitement about neural networks. Nature 337, 129–132 (1989)

    Article  Google Scholar 

  20. Zipser, D., Rumelhart, D.: The neurobiological significance of the new learning models. In: Computational Neuroscience. MIT Press, Cambridge (1993)

    Google Scholar 

  21. Deneve, S., Latham, P., Pouget, A.: Efficient computation and cue integration with noisy population codes. Nat. Neurosci. 4(8), 826–831 (2001)

    Article  Google Scholar 

  22. Douglas, R., Martin, K.: Recurrent neuronal circuits in the neocortex. Curr. Biol. 17(13), 496–500 (2007)

    Article  Google Scholar 

  23. Hebb, D.: The Organization of Behavior: A Neuropsychological Theory. Wiley, New York (1949)

    Google Scholar 

  24. Turrigiano, G., Nelson, S.: Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 5, 97–107 (2004)

    Article  Google Scholar 

  25. Georgopoulos, A.P., Kalaska, J.F., Caminiti, R., Massey, J.T.: On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J. Neurosci. 2(11), 1527–1537 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cook, M., Jug, F., Krautz, C., Steger, A. (2010). Unsupervised Learning of Relations. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15819-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15819-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15818-6

  • Online ISBN: 978-3-642-15819-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics