Skip to main content

Incoherent Digital Holographic Microscopy with Coherent and Incoherent Light

  • Chapter
  • First Online:
Coherent Light Microscopy

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 46))

  • 2416 Accesses

Abstract

Holography is an attractive imaging technique as it offers the ability to view a complete three-dimensional volume from one image. However, holography is not widely applied to the regime of fluorescence microscopy, because fluorescent light is incoherent and creating holograms requires a coherent interferometer system. We review two methods of generating digital Fresnel holograms of three-dimensional microscopic specimens illuminated by incoherent light. In the first method, a scanning hologram is generated by a unique scanning system in which Fresnel zone plates (FZP) are created by a coherently illuminated interferometer. In each scanning period, the system produces an on-axis Fresnel hologram. The twin image problem is solved by a linear combination of at least three holograms taken with three FZPs with different phase values. The second hologram reviewed here is the Fresnel incoherent correlation hologram. In this motionless holographic technique, light is reflected from the 3-D specimen, propagates through a spatial light modulator (SLM), and is recorded by a digital camera. Three holograms are recorded sequentially, each for a different phase factor of the SLM function. The three holograms are superposed in the computer, such that the result is a complex-valued Fresnel hologram that does not contain a twin image. When these two types of hologram are reconstructed in the computer, the 3-D properties of the specimen are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.W. Lohmann, Wavefront reconstruction for incoherent objects. J. Opt. Soc. Am. 55, 1555–1556 (1965)

    Article  Google Scholar 

  2. G.W. Stroke, R.C. Restrick, III, Holography with spatially noncoherent light. Appl. Phys. Lett. 7, 229–231 (1965)

    Article  ADS  Google Scholar 

  3. G. Cochran, New method of making Fresnel transforms with incoherent light. J. Opt. Soc. Am. 56, 1513–1517 (1966)

    Article  ADS  Google Scholar 

  4. P. Peters, Incoherent holograms with a mercury light source. J. Appl. Phys. Lett. 8, 209–210 (1966)

    Article  ADS  Google Scholar 

  5. H.R. Worthington, Jr., Production of holograms with incoherent illumination. J. Opt. Soc. Am. 56, 1397–1398 (1966)

    Article  Google Scholar 

  6. J.B. Breckinridge, Two-dimensional white light coherence interferometer. Appl. Opt.13, 2760–2762 (1974)

    Article  ADS  Google Scholar 

  7. A.S. Marathay, Noncoherent-object hologram: Its reconstruction and optical processing. J. Opt. Soc. Am. A 4, 1861–1868 (1987)

    Article  ADS  Google Scholar 

  8. L.M. Mugnier, G.Y. Sirat, D. Charlot, Conoscopic holography: Two-dimensional numerical reconstructions. Opt. Lett. 18, 66–68 (1993)

    Article  ADS  Google Scholar 

  9. Y. Li, D. Abookasis, J. Rosen, Computer-generated holograms of three-dimensional realistic objects recorded without wave interference. Appl. Opt. 40, 2864–2870 (2001)

    Article  ADS  Google Scholar 

  10. Y. Sando, M. Itoh, T. Yatagai, Holographic three-dimensional display synthesized from three-dimensional Fourier spectra of real-existing objects. Opt. Lett. 28, 2518–2520 (2003)

    Article  ADS  Google Scholar 

  11. N.T Shaked, J. Rosen, Multiple-viewpoint projection holograms synthesized by spatially incoherent correlation with broadband functions. J. Opt. Soc. Am. A 25, 2129–2138 (2008)

    Article  Google Scholar 

  12. J.-H. Park, M.-S. Kim, G. Baasantseren, N. Kim, Fresnel and Fourier hologram generation using orthographic projection images. Opt. Exp.17, 6320–6334 (2009)

    Article  ADS  Google Scholar 

  13. T.-C. Poon, A. Korpel, Optical transfer function of anacousto-optic heterodyning image processor. Opt. Lett. 4, 317–319 (1979)

    Article  ADS  Google Scholar 

  14. B.W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda,Y. Suzuki, M.H. Wu, Three-dimensional holographic fluorescence microscopy. Opt. Lett. 22, 1506–1508 (1997)

    Article  ADS  Google Scholar 

  15. T.-C. Poon, Optical Scanning Holography with MATLAB (Springer, New York, NY, 2007)

    Book  Google Scholar 

  16. T.-C. Poon, Recent progress in optical scanning holography. J. Hologr. Speckle 1, 6–25 (2004)

    Article  Google Scholar 

  17. J. Rosen, G. Indebetouw, G. Brooker, Homodyne scanning holography. Opt. Exp. 14, 4280–4285 (2006)

    Article  ADS  Google Scholar 

  18. J. Rosen, G. Brooker, Digital spatially incoherent Fresnel holography. Opt. Lett. 32, 912–914 (2007)

    Article  ADS  Google Scholar 

  19. J. Rosen, G. Brooker, Fluorescence incoherent color holography. Opt. Exp. 15, 2244–2250 (2007)

    Article  ADS  Google Scholar 

  20. J. Rosen, G. Brooker, Non-scanning motionless fluorescence three-dimensional holographic microscopy. Nat. Photon. 2, 190–195 (2008)

    Article  ADS  Google Scholar 

  21. B. Katz, J. Rosen, Super-resolution in incoherent optical imaging using synthetic aperture with Fresnel elements. Opt. Exp. 18, 962–972 (2010)

    Article  ADS  Google Scholar 

  22. J.W. Goodman, Introduction to Fourier Optics, 2nd edn. (McGraw-Hill, New York, NY, 1996)

    Google Scholar 

  23. S.M. Beck, J.R. Buck, W.F. Buell, R.P. Dickinson, D.A. Kozlowski, N.J. Marechal, T.J. Wright, Synthetic-aperture imaging laser radar: Laboratory demonstration and signal processing. Appl. Opt. 44, 7621–7629 (2005)

    Article  ADS  Google Scholar 

  24. V. Mico, Z. Zalevsky, P. García-Martínez, J. García, Synthetic aperture superresolution with multiple off-axis holograms. J. Opt. Soc. Am. A 23, 3162–3170 (2006)

    Article  ADS  Google Scholar 

  25. L. Martínez-Lón, B. Javidi, Synthetic aperture single-exposure on-axis digital holography. Opt. Exp.16, 161–169 (2008)

    Article  ADS  Google Scholar 

  26. G. Indebetouw, Y. Tada, J. Rosen, G. Brooker, Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms. Appl. Opt.46, 993–1000 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Rosen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rosen, J., Brooker, G. (2011). Incoherent Digital Holographic Microscopy with Coherent and Incoherent Light. In: Ferraro, P., Wax, A., Zalevsky, Z. (eds) Coherent Light Microscopy. Springer Series in Surface Sciences, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15813-1_4

Download citation

Publish with us

Policies and ethics