Skip to main content

An Overview of the Technological and Scientific Achievements of the Terahertz

  • Chapter
  • First Online:
Terahertz Technology

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 77))

Abstract

Due to the importance of terahertz radiation in the past several years in spectroscopy, astrophysics, and imaging techniques namely for biomedical applications (its low interference and non-ionizing characteristics, has been made to be a good candidate to be used as a powerful technique for safe, in vivo medical imaging), we decided to review of the terahertz technology and its associated science achievements. The review consists of terahertz terminology, different applications, and main components which are used for detection and generation of terahertz radiation. Also a brief theoretical study of generation and detection of terahertz pulses will be considered. Finally, the chapter will be ended by providing the usage of organic materials for generation and detection of terahertz radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kerecman, A.J.: The tungsten–P type silicon point contact diode. IEEE MTT-S Int. Microw. Symp. Dig. 73, 30–34 (1973)

    Google Scholar 

  2. Fleming, J.W.: High resolution submillimeter-wave Fourier-transform spectrometry of gases. IEEE Trans. Microw. Theory Tech. 22, 1023–1025 (1974)

    Article  Google Scholar 

  3. Siegel, P.H.: Terahertz technology. Trans. Microw. Theory Tech. 50(3), 910–928 (2002)

    Article  Google Scholar 

  4. Semiconductor Physics Group, Department of Physics, University of Cambridge 2010. www.sp.phy.cam.ac.uk/…/WhatIsTHzImaging.htm.

  5. Phillips, T.G., Keene, J.: Submillimeter astronomy. Proc. IEEE 80, 1662–1678 (1992)

    Article  CAS  Google Scholar 

  6. Leisawitz, D., Danchi, W.C., DiPirro, M.J., Feinberg, L.D., Gezari, D.Y., Hagopian, M., et al.: Scientific motivation and technology requirements for the SPIRIT and SPECS far-infrared/submillimeter space interferometers. Proc. SPIE 4013, 36–46 (2000)

    Google Scholar 

  7. Waters, J.W.: Submillimeter-wavelength heterodyne spectroscopy and remote sensing of the upper atmosphere. Proc. IEEE 80, 1679–1701 (1992)

    Article  CAS  Google Scholar 

  8. Waters, J.W.: A ‘Focused’ MLS for EOS. Presented at the EOS Atmospheres Panel Presentation (1991)

    Google Scholar 

  9. Chyba, C.: Exploration of the solar system roadmap, science and mission strategy. NASA Office Space Sci. Solar Syst. Exploration Subcommittee, Galveston, TX (1999). http://solarsystem.nasa.gov/roadmap/pdffiles/Rmap.pdf

  10. Gaidis, M.C.: Space-based applications of far infrared systems. In: 8th Int. Terahertz Electron. Conf., Darmstadt, Germany, pp. 125–128 (2000)

    Google Scholar 

  11. Costley, A.E., Hastie, R.J., Paul, J.W., Chamberlain, J.: Plasma temperature determination through electron resonance. Phys. Rev. Lett. 33(13), 758–761 (1974)

    Article  Google Scholar 

  12. Sattler, S., Hartfuß, H.J., W7-AS Team: Experimental evidence for electron temperature fluctuations in the core plasma of the W7-AS stellerator. Phys. Rev. Lett. 72(5), 653–656 (1994)

    Article  CAS  Google Scholar 

  13. DeLucia, F., Albert, S.: Fast-scanning spectroscopic method for the submillimeter: The FASSST spectrometer. In: Proc. SPIE Millimeter Submillimeter Waves Applicat. IV Conf., San Diego, CA, vol. 3465, pp. 236–246 (1998)

    Google Scholar 

  14. Jacobsen, R.H., Mittleman, D.M., Nuss, M.C.: Chemical recognition of gases and gas mixtures with terahertz waves. Opt. Lett. 21(24), 2011–2013 (1996)

    Article  CAS  Google Scholar 

  15. Petkie, D.T., Goyette, T.M., Bettens, R.P.A., Belov, S.P., Albert, S., Helminger, P., De Lucia, F.C.: A fast scan submillimeter spectroscopic technique. Rev. Sci. Instrum. 68(4), 1675–1683 (1997)

    Article  CAS  Google Scholar 

  16. Woolard, D., Kaul, R., Suenram, R., Walker, A.H., Globus, T., Samuels, A.: Terahertz electronics for chemical and biological warfare agent detection. In: IEEE MTT-S Int. Microwave Symp. Dig., Anaheim, CA, pp. 925–928 (1999)

    Google Scholar 

  17. Woolard, D., et al.: The potential use of submillimeter-wave spectroscopy as a technique for biological warfare agent detection. In: 22nd Army Sci. Conf., Baltimore, MD (2000)

    Google Scholar 

  18. Dexheimer, S.L. (Ed.): Terahertz Spectroscopy Principles and Applications, CRC Press (2008)

    Google Scholar 

  19. Izatt, J.R., Russell, B., Gagnon, R., Drouin, B.: Simultaneous measurement of moisture content and basis weight of paper sheet with a submillimeter laser. U.S. Patent 4 755 678 (1988)

    Google Scholar 

  20. Cantor, A.J., Cheo, P., Foster, M., Newman, L.: Application of submillimeter wave lasers to high voltage cable inspection. IEEE J. Quantum Electron. 17, 477–489 (1981)

    Article  Google Scholar 

  21. Woolard, D. Terahertz electronic research for defense: novel technology and science. In: 11th Int. Space Terahertz Tech. Symp., Ann Arbor, MI, pp. 22–38 (2000)

    Google Scholar 

  22. Brown, E.R.: All solid-state photomixing THz transmitter. Univ. California at Los Angeles, Los Angeles, CA. DARPA proposal to BAA 99-15 (1999)

    Google Scholar 

  23. Waldman, J., Fetterman, H.R., Duffy, P.E., Bryant, T.G., Tannenwald, P.E.: Submillimeter model measurements and their applications to millimeter radar systems. In: Proc. 4th Int. Infrared Near-MillimeterWaves Conf., pp. 49–50 (1979)

    Google Scholar 

  24. Coulombe, M.J., Horgan, T., Waldman, J., Szatkowski, G., Nixon, W.: A 524 GHz polarimetric compact range for scale model RCS measurements. In: Proc. Antenna Meas. Tech. Assoc., Monterey, CA (1999)

    Google Scholar 

  25. Griebel, M., Ospald, F., Smet, J.: Nanomaterials and systems for generating and detecting terahertz radiation. http://www.fkf.mpg.de/klitzing/research_topics/research_topics_details.php?topic=Nanomaterials%20and%20systems%20for%20generating%20and%20detecting%20terahertz%20radiation

  26. Arnone, D.D., et al.: Applications of terahertz (THz) technology to medical imaging. In: Proc. SPIE Terahertz Spectroscopy Applicat. II (Munich, Germany), vol. 3823, pp. 209–219 (1999)

    Google Scholar 

  27. Markelz, A., et al.: Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz. Chem. Phys. Lett. 320, 42–48 (2000)

    Article  CAS  Google Scholar 

  28. Sherwin, M.S., Schmuttenmaer, C.A., Bucksbaum, P.H. (eds.): Opportunities in THz science. Report of a DOE-NSF-NIH Workshop, Arlington, VA (2004)

    Google Scholar 

  29. Hundertmark, D.: A short introduction to Anderson localization. http://www.math.uiuc.edu/~dirk/preprints/localization3.pdf (2007)

  30. Wiersma, D.: Laser physics: the smallest random laser. Nature (London) 406, 132–133 (2000)

    Article  CAS  Google Scholar 

  31. Alexander, S.B.: Optical Communication Receiver Design, pp. 129–132. SPIE Opt. Eng. Press/IEE, London (1997)

    Google Scholar 

  32. Samoska, L., et al.: InP MMIC chip set for power sources covering 80–170 GHz. Presented at the 12th Int. Space Terahertz Technol. Symp., San Diego, CA, 11.1 (2001)

    Google Scholar 

  33. Razeghi, M.: Technology of Quantum Devices. Springer, New York (2010)

    Book  Google Scholar 

  34. Weinreb, S., Kerr, A.R.: Cryogenic cooling of mixers for millimeter and centimeter wavelengths. IEEE J. Solid-State Circuits 8, 58–63 (1973)

    Article  Google Scholar 

  35. McColl, M., Millea, M.F., Silver, A.H.: The superconductor–semiconductor Schottky barrier diode detector. Appl. Phys. Lett. 23, 263–264 (1973)

    Article  CAS  Google Scholar 

  36. Karpov, A., Miller, D., Rice, F., Zmuidzinas, J., Stern, J.A., Bumble, B., Leduc, H.G.: Lownoise 1.2 THz SIS receiver. In: 8th Int. Superconduct. Electron. Conf., Osaka, Japan, pp. 521–522 (2001)

    Google Scholar 

  37. McGrath, W.R.: Hot-electron bolometer mixers for submillimeter wavelengths: an overview of recent developments. In: 6th Int. Space Terahertz Technol. Symp., Pasadena, CA, pp. 216–228 (1995)

    Google Scholar 

  38. Skalare, A., McGrath, W.R., Echternach, P., LeDuc, H.G., Siddiqi, I., Verevkin, A., Prober, D.E.: Aluminum hot-electron bolometer mixers at submillimeter wavelengths. IEEE Trans. Appl. Superconduct. 11, 641–644 (2001)

    Article  Google Scholar 

  39. McGrath, W.R., Karasik, B.S., Skalare, A., Wyss, R., Bumble, B., LeDuc, H.G.: Hot-electron superconductive mixers for THz frequencies. In: SPIE Terahertz Spectroscopy Applicat. Conf., vol. 3617, pp. 80–88 (1999)

    Google Scholar 

  40. Karasik, B.S., Gaidis, M.C., McGrath, W.R., Bumble, B., LeDuc, H.G.: Lownoise in a diffusion-cooled hot-electron mixer at 2.5 THz. Appl. Phys. Lett. 71, 1567–1569 (1997)

    Article  CAS  Google Scholar 

  41. Wyss, R.A., Karasik, B.S., McGrath, W.R., Bumble, B., LeDuc, H.G.: Noise and bandwidth measurements of diffusion-cooled Nb hot-electron bolometer mixers at frequencies above the superconductive energy gap. In: 10th Int. Space Terahertz Technol. Symp., Charlottesville, VA, pp. 215–228 (1999)

    Google Scholar 

  42. Siegel P.H., Mehdi, I.: The spare-diode-detector: a new planardiode detector circuit with state-of-the-art performance for millimeter and submillimeter wavelengths. JPL, Pasadena, CA, JPL New Technol. Rep. NPO-20 104 (1996)

    Google Scholar 

  43. Erickson, N.R.: A fast and sensitive submillimeter waveguide power meter. In: 10th Int. Space Terahertz Technol. Symp., pp. 501–507 (1999)

    Google Scholar 

  44. Betz, A.L., Boreiko, R.T.: HgCdTe photoconductive mixers for 2–8 THz. In: 12th Int. Space Terahertz Technol. Conf., San Diego, CA, pp. 92–101 (2001)

    Google Scholar 

  45. Wang, N., et al.: Characterization of a submillimeter high-angular resolution camera with a monolithic silicon bolometer array for the CalTech submillimeter observatory. Appl. Opt. 35(4), 6629–6640 (1996)

    Article  CAS  Google Scholar 

  46. Mauskopf, P.D., Bock, J.J., Del Castillo, H., Holzapfel, W.L., Lange, A.E.: Composite infrared bolometers with Si N micromesh absorbers. Appl. Opt. 36(4), 765–771 (1997)

    Article  CAS  Google Scholar 

  47. Komiyama, S., Astafiev, O., Antonov, V., Hirai, H., Kutsuwa, T.: A single-photon detector in the far-infrared range. Nature 405, 405–407 (2000)

    Article  Google Scholar 

  48. Astafiev, O., Antonov, V., Kutsuwa, T., Komiyama, S.: Electrostatics of quantum dots in high magnetic fields studied by single-photon detection. Phys. Rev. B Condens. Matter 62(24), R16731–R16743 (2000)

    Article  Google Scholar 

  49. Schoelkopf, R.J., Wahlgren, P., Kozhevnikov, A.A., Delsing, P., Prober, D.E.: The radio-frequency single-electron transistor (RF-SET): a fast and ultrasensitive electrometer. Science 280, 1238–1242 (1998)

    Article  CAS  Google Scholar 

  50. Komiyama, S., Astafiev, O., Antonov, V., Kutsuwaa, T.: Single-photon detection of THz-waves using quantum dots. Microelectron. Eng. 63, 173–178 (2002)

    Article  CAS  Google Scholar 

  51. Byrd, J.: THz Detectors, Accelerator-Based Sources of Coherent Terahertz Radiation. UCSC, Santa Rosa (2008)

    Google Scholar 

  52. Courtesy of Thomas Keating Ltd and QMC Instruments Ltd (part of the Churchwood Trust Group of companies). http://qmciworks.ph.qmw.ac.uk/index.php?option=com_content&view=article&id=109&Itemid=533

  53. Langley, S.P.: The bolometer. Nature (London) 25, 14–16 (1881)

    Article  Google Scholar 

  54. Shur, M.: Terahertz electronics. CS MANTECH Conference, Chicago, Illinois, USA (2008)

    Google Scholar 

  55. Shur, M.S.: Terahertz technology: devices and applications. In: Ghibaudo, G., Skotnicki, T., Cristoloveanu, S., Brillouet, M. (eds.) Proceedings of ESSDERC 2005, 35th European Solid-State Device Research Conference, Grenoble, France, pp. 13–21 (2005)

    Google Scholar 

  56. Han, P.Y., Zhang, X.-C.: Free-space coherent broadband terahertz time-domain spectroscopy. Meas. Sci. Technol. 12, 1747–1756 (2001)

    Article  CAS  Google Scholar 

  57. Smith, B.C.: Fourier Transform Infrared Spectroscopy. CRC Press, London (1996)

    Google Scholar 

  58. Kremer, F., Schönhals, A. (eds.): Broadband Dielectric Spectroscopy. Springer, New York (2002)

    Google Scholar 

  59. Crowe, T.W., Mattauch, R.J., Roser, H.P., Bishop, W.L., Peatman, W.C.B., Liu, X.: GaAs Schottky diodes for THz mixing applications. Proc. IEEE 80(11), 1827–1841 (1992)

    Google Scholar 

  60. Shur, M.S., Eastman, L.F.: Ballistic transport in semiconductors at low-temperatures for low power high speed logic. IEEE Trans. Electron. Dev. 26(11), 1677–1683 (1979)

    Article  Google Scholar 

  61. Cooke, M.: Silicon transistor hits 500 GHz performance. III-Vs Review, 30–31 (2006)

    Google Scholar 

  62. Rieh, J.-S., Jagannathan, B., Greenberg, D.R., Meghelli, M., Rylyakov, A., Guarin, F., Yang, Z., Ahlgren, D.C., Freeman, G., Cottrell, P., Harame, D.: SiGe heterojunction bipolar transistors and circuits toward terahertz communication applications. IEEE Trans. Microw. Theory Tech. 52, 2390–2408 (2004)

    Article  CAS  Google Scholar 

  63. Snodgrass, W., Wu, B.-R., Cheng, K.Y., Feng, M.: Type-II GaAsSb/InP DHBTs with Record fT = 670 GHz and Simultaneous fT, fmax > 400 GHz. In: IEDM Technical Digest, pp. 663–666 (2007)

    Google Scholar 

  64. Lai, R., Mei, X. B., Deal, W.R., Yoshida, W., Kim, Y.M., Liu, P.H., Lee, J., et al.: A. Fung, Sub 50 nm InP HEMT Device with Fmax Greater than 1 THz. IEDM Technical Digest, pp. 609–611 (2007)

    Google Scholar 

  65. Lee, S., Jagannathan, B., Narasimha, S., Chou, A., Zamdmer, N., Johnson, J., Williams, R., Wagner, L., Kim, J., Plouchart, J.-O., Pekarik, J., Springer, S., Freeman, G.: Record RF performance of 45 nm SOI CMOS technology. In: IEDM Dig. Tech. Papers, pp. 255–258 (2007)

    Google Scholar 

  66. Knap, W., Teppe, F., Meziani, Y., Dyakonova, N., Lusakowski, J., Boeuf, F., Skotnicki, T., et al.: Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors. Appl. Phys. Lett. 85, 675–677 (2004)

    Article  CAS  Google Scholar 

  67. Teppe, F., Meziani, Y.M., Dyakonova, N., Lusakowski, J., Boeuf, F., Skotnicki, T., Maude, D., et al.: Terahertz detectors based on plasma oscillations in nanometric silicon field effect transistors. Physica Status Solidi C: Conferences 2, 1413–1417 (2005)

    Article  CAS  Google Scholar 

  68. Pala, N., Teppe, F., Veksler, D., Deng, Y., Shur, M.S., Gaska, R.: Nonresonant detection of terahertz radiation by silicon-on-insulator MOSFETs. Electron. Lett. 41, 447–449 (2005)

    Article  CAS  Google Scholar 

  69. Stillman, W., Shur, M.S., Veksler, D., Rumyantsev, S., Guarin, F.: Device loading effects on nonresonant detection of terahertz radiation by silicon MOSFETs. Electron. Lett. 43, 422–423 (2007)

    Article  CAS  Google Scholar 

  70. Stillman, W., Guarin, F., Kachorovskii, V.Y., Pala, N., Rumyantsev, S., Shur, M.S., Veksler, D.: Nanometer scale complementary silicon MOSFETs as detectors of terahertz and sub-terahertz radiation. In: 6th Annual IEEE Conference on Sensors, Atlanta, GA (2007)

    Google Scholar 

  71. McPheron, B.D.: Process development for a traveling wave terahertz detector, process & characterization. In: The NNIN REU Research Accomplishments (2009)

    Google Scholar 

  72. Van Zeghbroeck, B.: Principles of semiconductor devices. Section 2.3 (2007)

    Google Scholar 

  73. Bean, J., Tiwari, B., Szakmany, G., Bernstein, G., Fay, P., Porod, W.: Long wave infrared detection using dipole antenna-coupled metal-oxide-metal diodes. IEEE IRMMW-THz Digest (2008)

    Google Scholar 

  74. El Fatimy, A., Tombet, S.B., Teppe, F., Knap, W., Veksler, D.B., Rumyantsev, S., Shur, M.S., et al.: Terahertz detection by GaN/AlGaN transistors. Electron. Lett. 42, 1342–1343 (2006)

    Article  CAS  Google Scholar 

  75. Cao, Y., Jena, D.: High-mobility window for two-dimensional electron gases at ultrathin AlN/GaN heterojunctions. Appl. Phys. Lett. 90, 182112-1–182112-3 (2007)

    Google Scholar 

  76. Zimmermann, T., Cao, Y., Deen, D., Simon, J., Fay, P., Jena, D., Xing, H.: AlN/GaN insulated gate HEMTs with 2.3 A/mm output current and 480 mS/mm transconductance. IEEE Electron. Dev. Lett. 29(7), 661–664 (2008)

    Article  CAS  Google Scholar 

  77. Cooke, M.: Pushing semiconductor detectors into the terahertz gap. III-Vs Rev. Adv. Semicond. Mag. 19(8), 36–38 (2006)

    Article  Google Scholar 

  78. In research being conducted by Andrea Markelz and Jonathan Bird at the University at Buffalo, 2006. http://electron.physics.buffalo.edu/spectre/

  79. Bhattacharya, P., Huang, G., Yang, J.: Quantum dot photodetectors for THz detection, solid-state devices, theory, and technologies. In: Integrated Photonics and Optoelectronics, Research at the Solid State Electronics Laboratory (SSEL) (2010). http://www.mnf.umich.edu/SSEL/Projects/index.aspx?mid=3&sid=3&pid=47

  80. Popa-Simil, L., Popa-Simil, I.L.: Multiband THz detection and imaging devices. Nanotech Conference Boston (2008). http://www.nsti.org/Nanotech2008/

  81. Kawano, Y., Fuse, T., Toyokawa, S., Uchida, T., Ishibashi, K.: Terahertz photon-assisted tunneling in carbon nanotube quantum dots. J. Appl. Phys. 103, 034307-1–034307-4 (2008)

    Article  CAS  Google Scholar 

  82. Kawano, Y., Ishibashi, K.: An on-chip near-field terahertz probe and detector. Nat. Photon. 2, 618–621 (2008)

    Article  CAS  Google Scholar 

  83. Tucker, J.R., Feldman, M.J.: Quantum detection at millimeter wavelengths. Rev. Mod. Phys. 57, 1055–1113 (1985)

    Article  CAS  Google Scholar 

  84. Kouwenhoven, L.P., Jauhar, S., Orenstein, J., McEuen, P.L., Nagamune, Y., Motohisa, J., Sakaki, H.: Observation of photon-assisted tunneling through a quantum dot. Phys. Rev. Lett. 73, 3443–3446 (1994)

    Article  CAS  Google Scholar 

  85. Oosterkamp, T.H., Kouwenhoven, L.P., Koolen, A.E.A., van der Vaart, N.C., Harmans, C.J.P.M.: Photon sidebands of the ground state and first excited state of a quantum dot. Phys. Rev. Lett. 78, 1536–1539 (1997)

    Article  CAS  Google Scholar 

  86. Oosterkamp, T.H., Fujisawa, T., van der Wiel, W.G., Ishibashi, K., Hijman, R.V., Tarucha, S., Kouwenhoven, L.P.: Microwave spectroscopy of a quantum-dot molecule. Nature (London) 395, 873–876 (1998)

    Article  CAS  Google Scholar 

  87. Kawano, Y., Fuse, T., Toyokawa, S., Uchida, T., Ishibashi, K.: Highly sensitive and frequency- tunable THz detector using carbon nanotube quantum dots. In: IRMMW-THz, 33rd International Conference on Infrared, Millimeter and Terahertz Waves, 1-1 (2008). ISBN: 978-1-4244-2119-0

    Google Scholar 

  88. Zeuner, S., Allen, S.J., Maranowski, K.D., Gossard, A.C.: Photon-assisted tunneling in GaAs/AlGaAs superlattices up to room temperature. Appl. Phys. Lett. 69, 2689–2691 (1996)

    Article  CAS  Google Scholar 

  89. Tsukamoto, T., Moriyama, S., Tsuya, D., Suzuki, M., Yamaguchi, T., Aoyagi, Y., Ishibashi, K.: Carbon nanotube quantum dots fabricated on a GaAs/AlGaAs two-dimensional electron gas substrate. J. Appl. Phys. 98, 076106-1–076106-3 (2005)

    Article  CAS  Google Scholar 

  90. Vandersypen, L.M.K., Elzerman, J.M., Schouten, R.N., Willems van Beveren, L.H., Hanson, R., Kouwenhoven, L.P.: Real-time detection of single-electron tunneling using a quantum point contact. Appl. Phys. Lett. 85, 4394–4396 (2004)

    Article  CAS  Google Scholar 

  91. Franklin, N.R., Wang, Q., Tombler, T.W., Javey, A., Shim, M., Dai, H.: Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems. Appl. Phys. Lett. 81, 913–915 (2002)

    Article  CAS  Google Scholar 

  92. Kawano, Y., Okamoto, T.: Macroscopic channel-size effect of nonequilibrium electron distributions in quantum Hall conductors. Phys. Rev. Lett. 95, 166801-1–166801-4 (2005)

    Article  CAS  Google Scholar 

  93. Kawano, Y., Hisanaga, Y., Takenouchi, H., Komiyama, S.: Highly sensitive and tunable detection of far infrared radiation by quantum Hall devices. J. Appl. Phys. 89, 4037–4048 (2001)

    Article  CAS  Google Scholar 

  94. Kawano, Y., Ishibashi, K.: On-chip near-field terahertz detection based on a two- dimensional electron gas. Physica E 42, 1188–1191 (2010)

    Article  CAS  Google Scholar 

  95. Courtesy of RIKEN. http://www.optoiq.com/index/photonics-technologies-applications/lfw-display/lfw-article-display/365409/articles/laser-focus-world/volume-45/issue-7/features/terahertz-detectors-quantum-dots-enable-integrated-terahertz-imager.html

  96. Yang, J., Agahi, F., Dai, D., Musante, C.F., Grammer, W., Lau, K.M., Yngvesson, K.S.: Wide-bandwidth electron bolometric mixers: a 2DEG prototype and potential for low-noise THz receivers. IEEE Trans. Microw. Theory Tech. 41(4), 581–589 (1993)

    Article  CAS  Google Scholar 

  97. Cherednichenko, S., Kroug, M., Khosropanah, P., Adam, A., Merkel, H., Kollberg, E., Loudkov, D., Voronov, B., Gol’tsman, G., Huebers, H.W., Richter, H.: 1.6 THz HEB mixer for far infrared space telescope (Hershel). Physica C 372, 427–431 (2002)

    Article  Google Scholar 

  98. Prober, D.: Superconducting terahertz mixer using a transition-edge microbolometer. Appl. Phys. Lett. 62, 2119–2121 (1993)

    Article  CAS  Google Scholar 

  99. Lee, M., Pfeiffer, L.N., West, K.W.: Ballistic cooling in a wideband two-dimensional electron gas bolometric mixer. Appl. Phys. Lett. 81, 1243–1245 (2002)

    Article  CAS  Google Scholar 

  100. Kong, J., Yenilmez, E., Wombler, T.W., Kim, W., Dai, H., Laughlin, R.B., Liu, L., Jayanthi, C.S., Wu, S.Y.: Quantum interference and ballistic transmission in nanotube electron waveguides. Phys. Rev. Lett. 87, 106801-1–106801-4 (2001)

    Article  CAS  Google Scholar 

  101. Santavicca, D.F., Prober, D.E.: Terahertz resonances and bolometric response of a single-walled carbon nanotubes. Paper 1646, 33rd Int. Conf. Infrared, Millimeter and Terahertz Waves, CalTech, Pasadena, CA (2008)

    Google Scholar 

  102. Yngvesson, K.S.: Very wide bandwidth hot electron bolometer heterodyne detectors based on single-walled carbon nanotubes. Appl. Phys. Lett. 87, 043503-1–043503-3 (2005)

    Article  CAS  Google Scholar 

  103. Carrion, E., Muthee, M., Donovan, J., Zannoni, R., Nicholson, J., Polizzi, E., Yngvesson, K.S.: New results on Terahertz detection by carbon nanotubes. In: Proc. 20th Int. Symp. Space THz Technology, Charlottesville (2009)

    Google Scholar 

  104. Kawase, K., Sato, M., Taniuchi, T., Ito, H.: Coherent tunable THz-wave generation from LiNbO with monolithic grating coupler. J. Appl. Phys. 68(18), 2483–2485 (1996)

    CAS  Google Scholar 

  105. Matsuura, S., et al.: A traveling-wave THz photomixer based on angletuned phase matching. Appl. Phys. Lett. 74(19), 2872–2874 (1999)

    Article  CAS  Google Scholar 

  106. Noguchi, T., Ueda, A., Iwashita, H., Takano, S., Ishibashi, T., Ito, H., Nagatsuma, T.: Millimeter wave generation using a uni-traveling carrier photodiode. In: Presented at the 12th Int. Space Terahertz. Technol. Symp., San Diego, CA, Paper 3.2 (2001)

    Google Scholar 

  107. Xu, L., Zhang, X.-C., Auston, D.H.: Terahertz beam generation by femtosecond optical pulses in electro-optic materials. Appl. Phys. Lett. 61(15), 1784–1786 (1992)

    Article  CAS  Google Scholar 

  108. Mueller, E.R., Hesler, J., Crowe, T., Kurtz, D., Weikle, R.: Widelytunable laser sideband THz source for spectroscopy&LO applications. In: 12th Int. Space Terahertz. Technol. Symp., San Diego, CA, pp. 504–513 (2001)

    Google Scholar 

  109. Xu, B., Hu, Q., Melloch, M.R.: Electrically pumped tunable terahertz emitter based on intersubband transition. Appl. Phys. Lett. 71(4), 440–442 (1997)

    Article  CAS  Google Scholar 

  110. Sollner, T.C.L.G., Goodhue, W.D., Tannenwald, P.E., Parker, C.D., Peck, D.D.: Resonant tunneling through quantum wells at frequencies up to 2.5 THz. Appl. Phys. Lett. 43, 588–590 (1993)

    Article  Google Scholar 

  111. Reddy, M., Martin, S.C., Molnar, A.C., Muller, R.E., Smith, R.P., Siegel, P.H., Mondry, M.J., Rodwell, M.J. W., Allen, S.J. Jr.: Monolithic Schottky-collector resonant tunnel diode oscillator arrays to 650 GHz. In: 8th Int. Space Terahertz Technol. Symp., Cambridge, MA, pp. 149–161 (1997)

    Google Scholar 

  112. Song, I., Kang, K.-Y., Park, G.: Frequency-locked submillimeter wave generation from Josephson junction arrays. Jpn. J. Appl. Phys. pt. 1 38(1A), 44–47 (1999)

    Google Scholar 

  113. Weinreb, S., Gaier, T., Lai, R., Barsky, M., Leong, Y.C., Samoska, L.: High-gain 150–215 GHz MMIC amplifier with integral waveguide transitions. IEEE Microw. Guided Wave Lett. 9, 282–284 (1999)

    Article  Google Scholar 

  114. Samoska, L., Radisic, V., Micovic, M., Hu, M., Janke, P., Ngo, C.: InP MMIC chip set for power sources covering 80–170 GHz. In: Presented at the 12th Int. Space Terahertz Technol. Symp., San Diego, CA, Paper 11.1 (2001)

    Google Scholar 

  115. Faber, M.T., Chramiec, J., Adamski, M.E.: Microwave and millimeter-wave diode frequency multipliers. Artech House, Norwood (1995)

    Google Scholar 

  116. Maestrini, A., Bruston, J., Pukala, D., Martin, S., Mehdi, I.: Performance of a 1.2 THz frequency tripler using a GaAs frameless membrane monolithic circuit. In: IEEE MTT-S Int. Microwave Symp. Dig., Phoenix, AZ 3, 1657–1660 (2001)

    Google Scholar 

  117. Maiwald, F., Martin, S., Bruston, J., Maestrini, A., Crawford, T., Siegel, P.H.: 2.7 THz tripler using monolithic membrane diodes. In: IEEE MTT-S Int. Microwave Symp. Dig., Phoenix, AZ, 3, 1637–1640 (2001)

    Google Scholar 

  118. Miles, R.E., Garcia, J., Fletcher, J.R., Steenson, D.P., Chamberlain, J.M., Mann, C. M., Huq, E.J.: Modeling of micromachined klystrons for terahertz operation. In: 8th Int. Terahertz Electron. Conf., Darmstadt, Germany, pp. 55–58 (2000)

    Google Scholar 

  119. Siegel, P.H., Fung, A., Manohara, H., Xu, J., Chang, B.: Nanoklystron: A monolithic tube approach to terahertz power generation. In: 12th Int. Space Terahertz Technol. Symp., San Diego, CA, pp. 81–90 (2001)

    Google Scholar 

  120. East, J., Haddad, G.: Ballistic tunneling transit time device for terahertz power generation. In: 12th Int. Space Terahertz Technol. Symp., San Diego, CA, pp. 62–72 (2001)

    Google Scholar 

  121. Capasso, F., Colombelli, R., Paiella, R., Gmachl, C., Tredicucci, A., Sivco, D.L., Cho, A.Y.: Far-infrared and ultra-high-speed quantum-cascade lasers. Opt. Photon. News 12(5), 40–46 (2001)

    Article  CAS  Google Scholar 

  122. Nuss, M.C., Orenstein, J.: Terahertz time domain spectroscopy (THz-TDS). In: Gruener, G. (ed.) Millimeter-Wave Spectroscopy of Solids. Springer-Verlag, Berlin (1997)

    Google Scholar 

  123. Kawase, K., Sato, M., Taniuchi, T., Ito, H.: Coherent tunable terahertz-wave generation from LiNbO with monolithic grating coupler. Appl. Phys. Lett. 68(18), 2483–2485 (1996)

    Article  CAS  Google Scholar 

  124. Davies, A.G., Linfield, E.H., Johnston, M.B.: The development of terahertz sources and their applications. Phys. Med. Biol. 47, 3679–3689 (2002)

    Article  CAS  Google Scholar 

  125. Rochat, M., Ajili, L., Willenberg, H., Faist, J., Beere, H., Davies, G., Linfield, E., Ritchie, D.: Low-threshold terahertz quantum-cascade lasers. Appl. Phys. Lett. 81(8), 1381–1383 (2002)

    Article  CAS  Google Scholar 

  126. Mechold, L., Kunsh, J.: QCL modules are ready for industrial application. Laser Focus World 40(5), 88–92 (2004)

    CAS  Google Scholar 

  127. Koehler, R., et al.: Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002)

    Article  CAS  Google Scholar 

  128. Kumar, S., et al.: Terahertz semiconductor heterostructure laser. Appl. Phys. Lett. 84, 2494–2496 (2004)

    Article  CAS  Google Scholar 

  129. Watanabe, Y., et al.: Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging. Appl. Phys. Lett. 83, 800–802 (2003)

    Article  CAS  Google Scholar 

  130. Chamberlain, J.M., Miles, R.E., Collins, C.E., Steenson, D.P.: New directions in terahertz technology. In: Chamberlain, J.M., Miles, R.E. (eds.) NATO ASI Series. Kluwer, Dordrecht (1997)

    Google Scholar 

  131. Eisele, H., Rydberg, A., Haddad, G.I.: Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the 100–300-GHz frequency range and above. IEEE Trans. Microw Theory Tech. 48, 626–631 (2000)

    Article  CAS  Google Scholar 

  132. Faist, J., Capasso, F., Sivco, D.L., Sirtori, C., Hutchinson, A.L., Cho, A.Y.: Quantum cascade laser. Science 264, 553–556 (1994)

    Article  CAS  Google Scholar 

  133. Colombelli, R., Capasso, F., Gmachl, C., Hutchinson, A.L., Sivco, D.L., Tredicucci, A., Wanke, M.C., et al.: Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths. Appl. Phys. Lett. 78, 2620–2622 (2001)

    Article  CAS  Google Scholar 

  134. Hu, B.B., Nuss, M.C.: Imaging with terahertz waves. Opt. Lett. 20, 1716–1718 (1995)

    Article  CAS  Google Scholar 

  135. Nuss, M.C., Orenstein, J.: In: Grüner, G. (ed.) Millimeter and Submillimeter Wave Spectroscopy of Solids. Springer, Berlin (1998)

    Google Scholar 

  136. Wu, Q., Litz, M., Zhang, X.-C.: Broadband detection capability of ZnTe electro-optic field detectors. Appl. Phys. Lett. 68, 2924–2926 (1996)

    Article  CAS  Google Scholar 

  137. Han, P.Y., Tani, M., Pan, F., Zhang, X.-C.: Use of the organic crystal DAST for terahertz beam applications. Opt. Lett. 25, 675–677 (2000)

    Article  CAS  Google Scholar 

  138. Ma, X.F., Zhang, X.-C.: Determination of ratios between nonlinear-optical coefficients by using subpicosecond optical rectification. J. Opt. Soc. Am. B 10, 1175–1179 (1993)

    Article  CAS  Google Scholar 

  139. Seeta, P.N., Greene, B.I., Chuang, S.L.: Short terahertz pulses from semiconductor surfaces: the importance of bulk difference-frequency mixing. Appl. Phys. Lett. 63, 3482–3484 (1993)

    Article  Google Scholar 

  140. Rice, A., Jin, Y., Ma, X.F., Zhang, X.-C.: Terahertz optical rectification from <110> zinc-blende crystals. Appl. Phys. Lett. 64, 1324–1326 (1994)

    Article  CAS  Google Scholar 

  141. Corchia, A., Ciesla, C.M., Arnone, D.D., Linfield, E.H., Simmons, M.Y., Pepper, M.: Crystallographic orientation dependence of bulk optical rectification. J. Mod. Opt. 47, 1837–1845 (2000)

    CAS  Google Scholar 

  142. Auston, D.H.: Picosecond optoelectronic switching and gating in silicon. Appl. Phys. Lett. 26, 101–103 (1975)

    Article  CAS  Google Scholar 

  143. Grischkowsky, D.R.: Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy. IEEE J. Sel. Topics Quantum Electron. 6, 1122–1135 (2000)

    Article  CAS  Google Scholar 

  144. Zhang, X.-C., Hu, B.B., Darrow, J.T., Auston, D.H.: Generation of femtosecond electromagnetic pulses from semiconductor surfaces. Appl. Phys. Lett. 56, 1011–1013 (1990)

    Article  CAS  Google Scholar 

  145. Hu, B.B., Zhang, X.-C., Auston, D.H.: Terahertz radiation induced by subband-gap femtosecond optical excitation of GaAs. Phys. Rev. Lett. 67, 2709–2712 (1991)

    Article  CAS  Google Scholar 

  146. Gu, P., Tani, M., Kono, S., Sakai, K., Zhang, X.-C.: Study of terahertz radiation from InAs and InSb. J. Appl. Phys. 91(9), 5533–5537 (2002)

    Article  CAS  Google Scholar 

  147. Kono, S., Gu, P., Tani, M., Sakai, K.: Temperature dependence of terahertz radiation from n-type InSb and n-type InAs surfaces. Appl. Phys. B (Laser and Optics) 71, 901–904 (2000)

    CAS  Google Scholar 

  148. Weiss, C., Wallenstein, R., Beigang, R.: Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces. Appl. Phys. Lett. 77, 4160–4162 (2000)

    Article  CAS  Google Scholar 

  149. McLaughlin, R., Corchia, A., Johnston, M.B., Chen, Q., Ciesla, C.M., Arnone, D.D., Jones, G.A.C., et al.: Enhanced coherent terahertz emission from indium arsenide in the presence of a magnetic field. Appl. Phys. Lett. 76, 2038–2040 (2000)

    Article  CAS  Google Scholar 

  150. Corchia, A., McLaughlin, R., Johnston, M.B., Whittaker, D.M., Arnone, D.D., Linfield, E.H., Davies, A.G., Pepper, M.: Effects of magnetic field and optical fluence on terahertz emission in gallium arsenide. Phys. Rev. B 64, 205204-1–205204-5 (2001)

    Article  CAS  Google Scholar 

  151. Heyman, J.N., Neocleous, P., Hebert, D., Crowell, P.A., Müller, T., Unterrainer, K.: Terahertz emission from GaAs and InAs in a magnetic field. Phys. Rev. B 64, 085202-1–085202-7 (2001)

    Article  CAS  Google Scholar 

  152. Johnston, M.B., Corchia, A., Dowd, A., Linfield, E.H., Davies, A.G., McLaughlin, R., Arnone, D.D., Pepper, M.: Magnetic-field-induced enhancement of terahertz emission from III–V semiconductor surface. Physica E 13, 896–899 (2001)

    Article  Google Scholar 

  153. Han, P.Y., Cho, G.C., Zhang, X.-C.: Time-domain transillumination of biological tissues with terahertz pulses. Opt. Lett. 25, 242–244 (2000)

    Article  CAS  Google Scholar 

  154. Leitenstorfer, A., Hunsche, S., Shah, J., Nuss, M.C., Knox, W.H.: Femtosecond high-field transport in compound semiconductor. Phys. Rev. B 61, 16642–16652 (2000)

    Article  CAS  Google Scholar 

  155. Maestrini, A., Ward, J., Chattopadhyay, G., Schlecht, E., Mehdi, I.: Terahertz sources based on frequency multiplication and their applications. J. RF Eng. Telecommun. 62(5/6), 118–122 (2008)

    Google Scholar 

  156. Ward, J., Schlecht, E., Chattopadhyay, G., Maestrini, Gill, J., Maiwald, F., Javadi, H., Mehdi, I.: Capability of THz sources based on Schottky diode frequency multiplier chains. IEEE MTT-S Digest, pp. 1587–1590 (2004). doi: 0-7803-8331-1/04

    Google Scholar 

  157. Maestrini, A., Ward, J., Gill, J., Javadi, H., Schlecht, E., Chattopadhyay, G., Maiwald, F., Erickson, N.R., Mehdi, I.: A 1.7 to 1.9 THz local oscillator source. IEEE Microw. Wirel. Compon. Lett. 14(6), 253–255 (2004)

    Article  Google Scholar 

  158. Maestrini, A., Ward, J.S., Javadi, H., Tripon-Canseliet, C., Gill, J., Chattopadhyay, G., Schlecht, E., Mehdi, I.: Local oscillator chain for 1.55 to 1.75 THz with 100 μW peak power. IEEE Microw. Wirel. Compon. Lett. 15(12), 871–873 (2005)

    Article  Google Scholar 

  159. Erickson, N.: Diode frequency multipliers for THz local oscillator applications. SPIE Conference on Advanced Technology MMW, Radio, and Terahertz Telescopes, SPIE 3357, 75–84 (1998)

    Google Scholar 

  160. Maiwald, F., Schlecht, E., Ward, J., Lin, R., Leon, R., Pearson, J., Mehdi, I.: Design and operational considerations for robust planar GaAs varactors: a reliability study. In: Proceedings of 14th International Symposium on Space Terahertz Technology, Tucson, AZ, pp. 488–491 (2003)

    Google Scholar 

  161. Maestrini, A., Ward, J., Gill, J., Javadi, H., Schlecht, E., Tripon-Canseliet, C., Chattopadhyay, G., Mehdi, I.: A 540–640 GHz high efficiency four anode frequency tripler. IEEE Trans. Microw. Theory Tech. 53, 2835–2843 (2005)

    Article  Google Scholar 

  162. Maestrini, A., Tripon-Canseliet, C., Ward, J.S., Gill, J.J., Mehdi, I.: A high efficiency multiple-anode 260–340 GHz frequency tripler. In: Proceedings of the 17th International Conference on Space Terahertz Technology, Paris, paper P2-05, pp. 233–236 (2006)

    Google Scholar 

  163. Gallerano, G.P., Biedron, S.: Overview of terahertz radiation sources. In: Proceedings of the FEL Conference, pp. 216–221 (2004)

    Google Scholar 

  164. Staprans, A., McCune, E., Ruetz, J.: High-power linear-beam tubes. Proc. IEEE 61, 299–330 (1973)

    Article  Google Scholar 

  165. Stuart, R.A., Al-Shamma’a, A.I., Lucas, J.: Compact tuneable terahertz source. In: 2nd EMRS DTC Technical Conference, Edinburgh (2005)

    Google Scholar 

  166. Miles, R.E., Garcia, J., Fletcher, J.R., Steenson, D.P., Chamberlain, J.M., Mann, C.M., Huq, E.J.: Modeling of micromachined klystrons for terahertz operation. In: 8th Int. Terahertz Electron. Conf. Darmstadt, Germany, pp. 55–58 (2000)

    Google Scholar 

  167. Chamberlain, M., et al.: Miniaturized vacuum technologies: do they have a future for terahertz frequency devices? IEEE Conference, Pulsed power plasma science, PPPS-2001 Digest of technical papers 1, 130–134 (2001)

    Article  Google Scholar 

  168. Caryotakis, G., et al.: The klystrino: a high power W-band amplifier. In: International Vacuum Electronics Conference 2000 paper 1.5, Monterey, CA, USA (2000)

    Google Scholar 

  169. Bhattacharjee, S., et al.: Folded waveguide traveling-wave tube sources for terahertz radiation. IEEE Trans. Plasma Sci. 32, 1002–1014 (2004)

    Article  Google Scholar 

  170. Bjarnason, J.E., Chan, T.L.J., Lee, A.W.M., Brown, E.R., Driscoll, D.C., Hanson, M., Gossard, A.C., Muller, R.E.: ErAs:GaAs photomixer with two-decade tunability and 12 mW peak output power. Appl. Phys. Lett. 85(18), 3983–3985 (2004)

    Article  CAS  Google Scholar 

  171. Smith, F.W.: Ph.D. thesis. Massachusetts Institute of Technology (1990)

    Google Scholar 

  172. Kadow, C., Fleischer, S.B., Ibetson, J.P., Bowers, J.E., Gossard, A.C., Dong, J.W., Palmstrom, C.J.: Self-assembled ErAs islands in GaAs: growth and subpicosecond carrier dynamics. Appl. Phys. Lett. 75, 3548–3550 (1999)

    Article  CAS  Google Scholar 

  173. McIntosh, K.A., Brown, E.R., Nichols, K.B., McMahon, O.B., DiNatale, W.F., Lyszczarz, T.M.: Terahertz measurements of resonant planar antennas coupled to low-temperature-grown GaAs photomixers. Appl. Phys. Lett. 69, 3632–3634 (1996)

    Article  CAS  Google Scholar 

  174. Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of epsilon and mu. Sov. Phys. Usp. 10, 509–513 (1968)

    Article  Google Scholar 

  175. Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999)

    Article  Google Scholar 

  176. Pendry, J.B., Holden, A.J., Stewart, W.J., Youngs, I.: Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996)

    Article  CAS  Google Scholar 

  177. Mayes, M.G.: Miniature field deployable terahertz source. SPIE Defense and Security Conference, Orlando, FL (2006)

    Google Scholar 

  178. Marqués, R., Medina, F., Rafii-El-Idrissi, R.: Role of bianisotropy in negative permeability and left-handed metamaterials. Phys. Rev. B 65, 144440-1–144440-6 (2002)

    Google Scholar 

  179. Padilla, W.J., Aronsson, M.T., Highstrete, C., Lee, M., Taylor, A.J., Averitt, R.D.: Electrically resonant terahertz metamaterials: theoretical and experimental investigations. Phys. Rev. B 75, 041102-1–041102-4 (2007)

    Article  CAS  Google Scholar 

  180. Hidaka, T., Matsuura, S., Tani, M., Sakai, K.: CW terahertz wave generation by photomixing using a two-longitudinal-mode laser diode. Electron. Lett. 33, 2039–2040 (1997)

    Article  Google Scholar 

  181. Ostmann, T.K., Knobloch, P., Koch, M., Hoffmann, S., Breede, M., Hofmann, M., Hein, G., Pierz, K., Sperling, M., Donhuijsen, K.: Continuous-wave THz imaging. Electron. Lett. 37, 1461–1463 (2001)

    Article  Google Scholar 

  182. Diehl, L., Bour, D., Corzine, S., Zhu, J., Höfler, G., Lonar, M., Troccoli, M., Capasso, F.: High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K. Appl. Phys. Lett. 88, 201115-1–201115-3 (2006)

    Google Scholar 

  183. Ragam, S., Tanabe, T., Saito, K., Oyama, Y., Nishizawa, J.: Enhancement of CW THz wave power under noncollinear phase-matching conditions in difference frequency generation. J. Lightwave Technol. 27, 3057–3061 (2009)

    Article  CAS  Google Scholar 

  184. Nishizawa, J., Tanabe, T., Suto, K., Watanabe, Y., Sasaki, T., Oyama, Y.: Continuous-wave frequency-tunable terahertz-wave generation from GaP. IEEE Photon. Technol. Lett. 18, 2008–2010 (2006)

    Article  CAS  Google Scholar 

  185. Sowade, R., Breunig, I., Mayorga, I.C., Kiessling, J., Tulea, C., Dierolf, V., Buse, K.: Continuous-wave optical parametric terahertz source. Opt. Express 17(25), 22303–22310 (2009)

    Article  CAS  Google Scholar 

  186. Burgess, I.B., Zhang, Y., McCutcheon, M.W., Rodriguez, A.W., Bravo-Abad, J., et al.: Design of an efficient terahertz source using triply resonant nonlinear photonic crystal cavities. Opt. Express 17(22), 20099–20108 (2009)

    Article  Google Scholar 

  187. Belkin, M.A., Capasso, F., Belyanin, A., Sivco, D.L., Cho, A.Y., Oakley, D.C., Vineis, C.J., Turner, G.W.: Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation. Nat. Photon. 1, 288–292 (2007)

    Article  CAS  Google Scholar 

  188. Bieler, M.: THz generation from resonant excitation of semiconductor nanostructures: Investigation of secondorder nonlinear optical effects. IEEE J. Sel. Top. Quantum Electron. 14, 458–469 (2008)

    Article  CAS  Google Scholar 

  189. Andronico, A., Claudon, J., Gerard, J.M., Berger, V., Leo, G.: Integrated terahertz source based on three-wave mixing of whispering-gallery modes. Opt. Lett. 33, 2416–2418 (2008)

    Article  CAS  Google Scholar 

  190. Vodopyanov, K.L., Fejer, M.M., Yu, X., Harris, J.S., Lee, Y.S., Hurlbut, W.C., Kozlov, V.G., et al.: Terahertz-wave generation in quasi-phase-matched GaAs. Appl. Phys. Lett. 89, 141119-1–141119-3 (2006)

    Article  CAS  Google Scholar 

  191. Imeshev, G., Fermann, M.E., Vodopyanov, K.L., Fejer, M.M., Yu, X., Harris, J.S., Bliss, D., Lynch, C.: High-power source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser. Opt. Express 14, 4439–4444 (2006)

    Article  CAS  Google Scholar 

  192. Hebling, J., Stepanov, A.G., Almassi, G., Bartal, B., Kuhl, J.: Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts. Appl. Phys. B 78, 593–599 (2004)

    Article  CAS  Google Scholar 

  193. Van Exter, M., Grischkowsky, D.R.: Characterization of an optoelectronic terahertz beam system. IEEE Trans. Microw. Theory Tech. 38, 1684–1691 (1990)

    Article  Google Scholar 

  194. Wu, Q., Litz, M., Zhang, X.C.: Broadband detection capability of ZnTe electro-optic field detectors. Appl. Phys. Lett. 68, 2924–2926 (1996)

    Article  CAS  Google Scholar 

  195. Lee, Y.S., Meade, T., Perlin, V., Winful, H., Norris, T.B., Galvanauskas, A.: Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate. Appl. Phys. Lett. 76, 2505–2507 (2000)

    Article  CAS  Google Scholar 

  196. Schaar, J.E., Vodopyanov, K.L., Fejer, M.M.: Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs. Opt. Lett. 32, 1284–1286 (2007)

    Article  CAS  Google Scholar 

  197. McCutcheon, M.W., Youmg, J.F., Reiger, G.W., Dalacu, D., Frederick, S., Poole, P.J., Wiliams, R.L.: Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers. Phys. Rev. B 76, 245104-1–245104-6 (2007)

    Article  CAS  Google Scholar 

  198. McCutcheon, M.W., Chang, D.E., Zhang, Y., Lukin, M.D., Lonˇcar, M.: Broad-band spectral control of single photon sources using a nonlinear photonic crystal cavity. arXiv:0903.4706 (2009)

    Google Scholar 

  199. Singh, S.: Nonlinear optical materials. In: Weber, M.J. (ed.) Handbook of Laser Science and Technology, vol. III: Optical Materials, Part I. CRC Press (1986)

    Google Scholar 

  200. Baehr-Jones, T., Hochberg, M., Soref, R., Scherer, A.: Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides. J. Opt. Soc. Am. B 25(2), 261–268 (2008)

    Article  CAS  Google Scholar 

  201. Sasaki, Y., Yuri, A., Kawase, K., Ito, H.: Terahertz-wave surface-emitted difference frequency generation in slantstripe-type periodically poled LiNbO3 crystal. Appl. Phys. Lett. 81, 3323–3325 (2002)

    Article  CAS  Google Scholar 

  202. Kukushkin, V.: Efficient generation of terahertz pulses from single infrared beams in C/GaAs/C waveguiding heterostructures. J. Opt. Soc. Am. B 23, 2528–2534 (2006)

    Article  CAS  Google Scholar 

  203. Enami, Y., Derose, C.T., Mathine, D., Loychik, C., Greenlee, C., Norwood, R.A., Kim, T.D., et al.: Hybrid polymer/sol-gel waveguide modulators with exceptionally large electrooptic coefficients. Nat. Photon. 1, 180–185 (2007)

    Article  Google Scholar 

  204. Baehr-Jones, T., Hochberg, M., Wang, G.X., Lawson, R., Liao, Y., Sullivan, P.A., Dalton, L., et al.: Optical modulation and detection in slotted silicon waveguides. Opt. Express 13, 5216–5226 (2005)

    Article  CAS  Google Scholar 

  205. Mueller, E.: Terahertz radiation sources for imaging and sensing applications. Photonics Spectra 40, 60–69 (2006)

    Google Scholar 

  206. Palik, E.: Handbook of Optical Constants of Solids. Academic (1985)

    Google Scholar 

  207. Hochberg, M., Baehr-Jones, T., Wang, G.X., Shearn, M., Harvard, K., Luo, J.D., Chen, B.Q., et al.: Terahertz all-optical modulation in a silicon-polymer hybrid system. Nat. Mater. 5, 703–709 (2006)

    Article  CAS  Google Scholar 

  208. Plant, J., Juodawlkis, P.W., Huang, R.K., Donnelly, J.P., Missaggia, L.J., Ray, K.G.: 1.5-μm InGaAsP-InP slabcoupled optical waveguide lasers. IEEE Photonics Technol. Lett. 17, 735–737 (2005)

    Article  CAS  Google Scholar 

  209. Tani, M., Herrmann, M., Sakai, K.: Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging. Meas. Sci. Technol. 13, 1739–1745 (2002)

    Article  CAS  Google Scholar 

  210. Smith, P.R., Auston, D.H., Nuss, M.C.: Subpicosecond photoconducting dipole antennas. IEEE J. Quantum Electron. 24, 255–260 (1988)

    Article  Google Scholar 

  211. Tani, M., Matsuura, S., Sakai, K., Nakashima, S.: Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs. Appl. Opt. 36, 7853–7859 (1997)

    Article  CAS  Google Scholar 

  212. Sakai, K. (ed.): Terahertz Optoelectronics. Springer-Verlag, Berlin (2005)

    Google Scholar 

  213. Sakurada, T., Kadoya, Y., Yamanishi, M.: THz electromagnetic wave radiation from bulk semiconductor microcavities excited by short laser pulses. Jpn. J. Appl. Phys. 41, L256–L259 (2002)

    Article  CAS  Google Scholar 

  214. Zheng, X., McLaughlin, C.V., Cunningham, P., Michael Hayde, L.: Organic broadband terahertz sources and sensors. J. Nanoelectron. Optoelectron. 2, 1–19 (2007)

    Article  Google Scholar 

  215. Zhang, X.-C., Ma, X.F., Jin, Y., Lu, T.-M., Boden, E.P., Phelps, P.D., et al.: Terahertz optical rectification from a nonlinear organic crystal. Appl. Phys. Lett. 61, 3080–3082 (1992)

    Article  CAS  Google Scholar 

  216. Carrig, T.J., Rodriguez, G., Clement, T.S., Taylor, A.J., Stewart, K.R.: Scaling of terahertz radiation via optical rectification in electro-optic crystals. Appl. Phys. Lett. 66, 121–123 (1995)

    Article  CAS  Google Scholar 

  217. Carey, J.J., Bailey, R.T., Pugh, D., Sherwood, J.N., Cruickshank, F.R., Wynne, K.: Terahertz pulse generation in an organic crystal by optical rectification and resonant excitation of molecular charge transfer. Appl. Phys. Lett. 81, 4335–4337 (2002)

    Article  CAS  Google Scholar 

  218. Zheng, X., Sinyukov, A., Hayden, L.M.: Broadband and gap-free response of a terahertz system based on a poled polymer emitter-sensor pair. Appl. Phys. Lett. 87, 081115-1–081115-3 (2005)

    Google Scholar 

  219. Soci, C., Moses, D.: Terahertz generation from poly (p-phenelene, vinylene) photoconductive antenna. Synth. Met. 139, 815–817 (2003)

    Article  CAS  Google Scholar 

  220. Ostroverkhova, O., Shcherbyna, S., Cooke, D.G., Egerton, R.F., Hegmann, F.A., Tykwinski, R.R., Parkin, S.R., Anthony, J.E.: Optical and transient photoconductive properties of pentacene and functionalized pentacene thin films: dependence on film morophology. J. Appl. Phys. 98, 033701-1–033701-12 (2005)

    Article  CAS  Google Scholar 

  221. Ito, T., Shirakawa, H., Ikeda, S.: Simultaneous polymerization and formation of polyacetylene film on the surface of concentrated soluble Ziegler-type catalyst solution. J. Polym. Sci. Chem. Ed. 12, 11–20 (1974)

    Article  CAS  Google Scholar 

  222. Hayden, L.M., Sinyukov, A.M., Leahy, M.R., French, J., Lindahl, P., Herman, W.N., Twieg, R.J., He, M.: New materials for optical rectification and electrooptic sampling ultrashort pulses in the terahertz regime. J. Polym. Sci. B: Polym. Phys. 41, 2492–2500 (2003)

    Article  CAS  Google Scholar 

  223. Sinyukov, A.M., Hayden, L.M.: Efficient electro-optic polymers for THz systems. J. Phys. Chem. B 108, 8515–8522 (2004)

    Article  CAS  Google Scholar 

  224. Mori, Y., Takahashi, Y., Iwai, T., Yoshimura, M., Yap, Y.K., Sasaki, T.: Slope nucleation method for the growth of high-quality 4-dmethylamino-methyl-4-stilbazolium-tosylate (DAST) crystals. Jpn. J. Appl. Phys. 39, L1006–L1008 (2000)

    Article  CAS  Google Scholar 

  225. Walther, M., KJensby, J., Keiding, S.R., Takahashi, H., Ito, H.: Far-infrared properties of DAST. Opt. Lett. 25, 911–913 (2000)

    Article  CAS  Google Scholar 

  226. Bosshard, C., Spreiter, R., De De giorgi, L., Gunter, P.: Infrared and Raman spectroscopy of the organic crystal polarization dependence and contribution of molecular vibrations DAST: to the linear electro-optic effect. Phys. Rev. B 66, 205107(1)–205107(9) (2002)

    Article  CAS  Google Scholar 

  227. Pan, F., Knöpfle, G., Bosshard, Ch., Follonier, S., Spreiter, R., Wong, M.S., Günter, P.: Electro-optic properties of the organic salt 4-N, N-dimethylamino-4’-N’-methyl-stilbazolium tosylate. Appl. Phys. Lett. 69, 13–15 (1996)

    Article  CAS  Google Scholar 

  228. Kawase, K., Mizuno, M., Sohma, S., Takahashi, H., Taniuchi, T., Urata, Y., Wada, S., et al.: Difference-frequency terahertz-wave generation from 4-N, N-dimethylamino-4’-N’-methyl-stilbazolium tosylate by use of an electronically tuned Ti: sapphire laser. Opt. Lett. 24, 1065–1067 (1999)

    Article  CAS  Google Scholar 

  229. Schneider, A., Biaggio, I., Günter, P.: Optimized generation of THz pulses via optical rectification in the organic salt DAST. Opt. Commun. 224, 337–341 (2003)

    Article  CAS  Google Scholar 

  230. Ito, H., Suizu, K., Yamashita, T., Nawahara, A., Sato, T.: Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal. Jpn. J. Appl. Phys. 46, 7321–7324 (2007)

    Article  CAS  Google Scholar 

  231. Ashida, M., Akai, R., Shimosato, H., Katayama, I., Itoh, T., Miyamoto, K., Ito, H.: Ultrabroadband THz field detection beyond 170 THz with a photoconductive antenna. In: The Conference on Lasers and Electro-Optics (CLEO) Proceedings, CTuX6 (2008)

    Google Scholar 

  232. Kawase, K., Hatanaka, T., Takahashi, H., Nakamura, K., Taniuchi, T., Ito, H.: Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate. Opt. Lett. 25, 1714–1716 (2000)

    Article  CAS  Google Scholar 

  233. Taniuchi, T., Okada, S., Nakanishi, H.: Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application. J. Appl. Phys. 95(11), 5984–5988 (2004)

    Article  CAS  Google Scholar 

  234. Meier, U., Bosch, M., Bosshard, C., Pan, F., Gunter, P.: Parametric interactions in the organic salt 4-N, N-dimethylamino-4′-N′-methyl-stilbazolium tosylate at telecommunication wavelengths. J. Appl. Phys. 83, 3486–3489 (1998)

    Article  CAS  Google Scholar 

  235. Aggarwal, R.L., Lax, B.: Nonlinear Infrared Generation, p. 28. Springer, New York (1977)

    Google Scholar 

  236. Hohmann, K., Schippers, W., Willer, U., Bohling, C., Schade, W., Schossig, T.: Fiber-amplifier based THz source using difference-frequency generation in a DAST crystal. In: Quantum Electronics and Laser Science Conference (QELS) (2005)

    Google Scholar 

  237. Beard, M.C., Turner, G.M., Schmuttenmaer, C.A.: Measurement of electromagnetic radiation emitted during rapid intramolecular electron transfer. J. Am. Chem. Soc. 122, 11541–11542 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Rostami .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer -Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rostami, A., Rasooli, H., Baghban, H. (2011). An Overview of the Technological and Scientific Achievements of the Terahertz. In: Terahertz Technology. Lecture Notes in Electrical Engineering, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15793-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15793-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15792-9

  • Online ISBN: 978-3-642-15793-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics