Skip to main content

Disorders of Neurotransmission

  • Chapter
Inborn Metabolic Diseases

Abstract

This chapter deals primarily with inborn errors of neurotransmitter metabolism. Defects of their receptors and transporters – and disorders involving vitamine B6 (pyridoxine) and its derivative, pyridoxal phosphate, a co-factor required for the synthesis of several neurotransmitters – are also discussed. Three defects of GABA catabolism have been reported: GABA transaminase deficiency(which is very rare, severe and untreatable), succinic semialdehyde dehydrogenase (SSADH) deficiency, and homocarnosinosis (◘ Fig. 29.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jaeken J, Casaer P, De Cock P et al. (1984) Gamma-aminobutyric acid-transaminase deficiency: a newly recognized inborn error of neurotransmitter metabolism. Neuropediatrics 15:165–169

    Article  PubMed  CAS  Google Scholar 

  2. Tsuji M, Aida N, Obata T, Tomiyasu M, Furuya N, Kurosawa K, Errami A, Gibson KM, Salomons GS, Jakobs C, Osaka H (2010) A new case of GABA transaminase deficiency facilitated by proton MR spectroscopy. J Inherit Metab Dis 33:85–90

    Article  PubMed  CAS  Google Scholar 

  3. Gibson KM, Sweetman L, Nyhan WL, Jansen I (1985) Demonstration of 4-aminobutyric acid aminotransferase deficiency in lymphocytes and lymphoblasts. J Inherit Metab Dis 8:204–208

    Article  PubMed  CAS  Google Scholar 

  4. Medina-Kauwe LK, Nyhan WL, Gibson KM, Tobin AJ (1998) Identification of a familial mutation associated with GABA-transaminase deficiency disease. Neurobiol Dis 5:89–96

    Article  PubMed  CAS  Google Scholar 

  5. Schor DS, Struys EA, Hogema BM, Gibson KM, Jakobs C (2001) Development of a stable-isotope dilution assay for gammaaminobutyric acid (GABA) transaminase in isolated leukocytes and evidence that GABA and beta-alanine transaminases are identical. Clin Chem 47:525–531

    PubMed  CAS  Google Scholar 

  6. Kok RM, Howells DW, Heuvel v d CCM et al. (1993) Stable isotope dilution analysis of GABA in CSF using simple solvent extraction and electron-capture negative-ion mass fragmentography. J Inherit Metab Dis 16:508–512

    Article  PubMed  CAS  Google Scholar 

  7. Sweetman FR, Gibson KM, Sweetman L et al. (1986) Activity of biotin-dependent and GABA metabolizing enzymes in chorionic villus samples: potential for 1st trimester prenatal diagnosis. Prenat Diagn 6:187–194

    Article  PubMed  CAS  Google Scholar 

  8. Jakobs C, Bojasch M, Monch E et al. (1981) Urinary excretion of gamma-hydroxybutyric acid in a patient with neurological abnormalities. The probability of a new inborn error of metabolism. Clin Chim Acta 111:169–178

    Article  PubMed  CAS  Google Scholar 

  9. Pearl PL, Gibson KM, Cortez MA et al. (2009) Succinic semialdehyde dehydrogenase deficiency: lessons from mice and men. J Inherit Metab Dis 32:343–352

    Article  PubMed  CAS  Google Scholar 

  10. Pearl PL, Gibson KM, Quezado Z et al. (2009) Decreased GABA-A binding on FMZ-PET in succinic semialdehyde dehydrogenase deficiency. Neurology 73:423–429

    Article  PubMed  CAS  Google Scholar 

  11. Knerr I, Pearl PL, Bottiglieri T et al. (2007) Therapeutic concepts in succinate semialdehyde dehydrogenase (SSADH; ALDH5a1) deficiency (gamma-hydroxybutyric aciduria). Hypotheses evolved from 25 years of patient evaluation, studies in Aldh5a1-/- mice and characterization of gamma-hydroxybutyric acid pharmacology. J Inherit Metab Dis 30:279–294

    Article  PubMed  CAS  Google Scholar 

  12. Gropman A (2003) Vigabatrin and newer interventions in succinic semialdehyde dehydrogenase deficiency. Ann Neurol 54 [Suppl 6]:S66-S72

    Article  PubMed  CAS  Google Scholar 

  13. Sjaastad O, Berstad J, Gjesdahl P, Gjessing L (1976) Homocarnosinosis. 2. A familial metabolic disorder associated with spastic paraplegia, progressive mental deficiency, and retinal pigmentation. Acta Neurol Scand 53: 275–290

    Article  PubMed  CAS  Google Scholar 

  14. Kramarenko GG, Markova ED, Ivanova-Smolenskaya IA, Boldyrev AA (2001) Peculiarities of carnosine metabolism in a patient with pronounced homocarnosinemia. Bull Exp Biol Med 132:996–999

    Article  PubMed  CAS  Google Scholar 

  15. De Koning-Tijssen MAJ, Rees MI (2007) Hyperekplexia. In: Pagon RA, Bird TC, Dolan CR, Stephens K (eds) GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2007 Jul 31 [updated 2009 May 19] PMID 20301437 [Pubmed]

    Google Scholar 

  16. Bernasconi A, Cendes F, Shoubridge EA et al. (1998) Spectroscopic imaging of frontal neuronal dysfunction in hyperekplexia. Brain 121:1507–1512

    Article  PubMed  Google Scholar 

  17. Shiang R, Ryan SG, Zhu Y-Z et al. (1993) Mutations in the α1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia. Nat Genet 5:351–358

    Article  PubMed  CAS  Google Scholar 

  18. Rees MI, Lewis TM, Kwok JBJ et al. (2002) Hyperekplexia associated with compound heterozygote mutations in the β-subunit of the human inhibitory glycine receptor (GLRB). Hum Mol Genet 11:853–860

    Article  PubMed  CAS  Google Scholar 

  19. Rees MI, Harvey K, Pearce BR et al. (2006) Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease. Nat Genet 38:801–806

    Article  PubMed  CAS  Google Scholar 

  20. Rees MI, Harvey K, Ward H et al. (2003) Isoform heterogeneity of the human gephyrin gene (GPHN), binding domains to the glycine receptor, and mutation analysis in hyperekplexia. J Biol Chem 278:24688–24696

    Article  PubMed  CAS  Google Scholar 

  21. Feng G, Tintrup H, Kirsch J et al. (1998) Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science 282:1321–1324

    Article  PubMed  CAS  Google Scholar 

  22. Harvey K, Duguid IC, Alldred MJ et al. (2004) The GDP-GTP exchange factor collybistin: an essential determinant of neuronal gephyrin clustering. J Neurosci 24:5816–5826

    Article  PubMed  CAS  Google Scholar 

  23. Tijssen MA, Schoemaker HC, Edelbroek PJ et al. (1997) The effects of clonazepam and vigabatrin in hyperekplexia. J Neurol Sci 149:63–67

    Article  PubMed  CAS  Google Scholar 

  24. Galanopoulou AS (2010) Mutations affecting GABAergic signaling in seizures and epilepsy. Pflugers Arch 460:505–523

    Article  PubMed  CAS  Google Scholar 

  25. Lu Y, Wang X (2009) Genes associated with idiopathic epilepsies: a current overview. Neurol Res 31:135–143

    Article  PubMed  CAS  Google Scholar 

  26. Galanopoulou AS (2008) GABA(A) receptors in normal development and seizures: friends or foes? Curr Neuropharmacol 6:1–20

    Article  PubMed  CAS  Google Scholar 

  27. Molinari F, Raas-Rothschild A, Rio M et al. (2005) Impaired mitochondrial glutamate transport in autosomal recessive neonatal myoclonic epilepsy. Am J Hum Genet 76:334–339

    Article  PubMed  CAS  Google Scholar 

  28. Molinari F, Kaminska A, Fiermonte G et al. (2009) Mutations in the mitochondrial glutamate carrier SLC25A22 in neonatal epileptic encephalopathy with suppression bursts. Clin Genet 76:188–194

    Article  PubMed  CAS  Google Scholar 

  29. Lüdecke B, Knappskog PM, Clayton PT et al. (1996) Recessively inherited l-dopa-responsive parkinsonism in infancy caused by a point mutation (L205P) in the tyrosine hydroxylase gene. Hum Mol Genet 5:1023–1028

    Article  PubMed  Google Scholar 

  30. Hoffmann GF, Assmann B, Bräutigam C et al. (2003) Tyrosine hydroxylase deficiency causes progressive encephalopathy and dopa-nonresponsive dystonia. Ann Neurol 54 [Suppl 6]:S56-S65

    Article  PubMed  CAS  Google Scholar 

  31. Furukawa Y, Kish SJ, Fahn S (2004) Dopa-responsive dystonia due to mild tyrosine hydroxylase deficiency. Ann Neurol 55:147–148

    Article  PubMed  Google Scholar 

  32. Schiller A, Wevers RA, Steenbergen GCH et al. (2004) Long-term course of l-dopa-responsive dystonia caused by tyrosine hydroxylase deficiency. Neurology 63:1524–1526

    PubMed  CAS  Google Scholar 

  33. Ribasés M, Serrano M, Fernández-Alvarez E et al. (2007) A homozygous tyrosine hydroxylase gene promoter mutation in a patient with dopa-responsive encephalopathy: clinical, biochemical and genetic analysis. Mol Genet Metab 92:274–277

    Article  PubMed  Google Scholar 

  34. Pons R, Serrano M, Ormazabal A et al. (2010) Tyrosine hydroxylase deficiency in three Greek patients with a common ancestral mutation. Mov Disord 15:969–1108

    Google Scholar 

  35. Willemsen MA, Verbeek MM, Kamsteeg EJ et al. (2010) Tyrosine hydroxylase deficiency: a treatable disorder of brain catecholamine biosynthesis. Brain 133:1810–1822

    Article  PubMed  Google Scholar 

  36. Ormazábal A, Serrano M, de Castro P et al. (2011) Report of a deletion in the tyrosine hydroxylase gene in a patient with a doparesponsive mild phenotype. Mov Disord Apr 4; doi: 10.1002/mds.23564 [Epub ahead of print]

    Google Scholar 

  37. Heuvel v d LPWJ, Luiten B, Smeitink JAM et al. (1998) A common point mutation in the tyrosine hydroxylase gene in autosomal recessive l-dopa-responsive dystonia (DRD) in the Dutch population. Hum Genet 102:644–646

    Article  Google Scholar 

  38. Marín-Valencia I, Serrano M, Ormazabal A et al. (2008) Biochemical diagnosis of dopaminergic disturbances in paediatric patients: analysis of cerebrospinal fluid homovanillic acid and other biogenic amines. Clin Biochem 41:1306–1315

    Article  PubMed  Google Scholar 

  39. Hyland K, Surtees RAH, Rodeck C, Clayton PT (1988) Aromatic lamino acid decarboxylase deficiency: clinical features, diagnosis, and treatment of a new inborn error of neurotransmitter amine synthesis. Neurology 42:1980–1988

    Google Scholar 

  40. Fiumara A, Bräutigam C, Hyland K et al. (2002) Aromatic l-amino acid decarboxylase deficiency with hyperdopaminuria: clinical and laboratory findings in response to different therapies. Neuropediatrics 33:203–208

    Article  PubMed  CAS  Google Scholar 

  41. Swoboda KJ, Saul JP, McKenna CE et al. (2003) Aromatic l-amino acid decarboxylase deficiency. Overview of clinical features and outcomes. Ann Neurol 54 [Suppl 6]:S49-S55

    Article  PubMed  CAS  Google Scholar 

  42. Brun L, Ngu LH, Keng WT et al. (2010) Clinical and biochemical features of aromatic L-amino acid decarboxylase deficiency. Neurology 75:64–71

    Article  PubMed  CAS  Google Scholar 

  43. Manegold C, Hoffmann GF, Degen I et al. (2009) Aromatic l-amino acid decarboxylase deficiency: clinical features, drug therapy and follow-up. J Inherit Metab Dis 32:371–380

    Article  PubMed  CAS  Google Scholar 

  44. Ito S, Nakayama T, Ide S et al. (2008) Aromatic l-amino acid decarboxylase deficiency associated with epilepsy mimicking non-epileptic involuntary movements. Dev Med Child Neurol 50:876–878

    Article  PubMed  Google Scholar 

  45. Robertson D, Garland EM (2005) Dopamine beta-hydroxylase deficiency. In: Pagon RA, Bird TC, Dolan CR, Stephens K (eds) GeneReviews (Internet). University of Washington, Seattle

    Google Scholar 

  46. Robertson D (1997) The role of clinical pharmacology in molecular genetics. Int J Clin Pharmacol Ther 35:135–141

    PubMed  CAS  Google Scholar 

  47. Deinum J, Steenbergen-Spanjers GC, Jansen M et al. (2004) DBH gene variants that cause low plasma dopamine beta hydroxylase with or without a severe orthostatic syndrome. J Med Genet 41:e38

    Article  PubMed  CAS  Google Scholar 

  48. Brunner HG, Nelen MR, Breakefield XO et al. (1993) Abnormal behaviour associated with a point mutation in the structural gene for monoamine oxidase A. Science 262:578–580

    Article  PubMed  CAS  Google Scholar 

  49. Brunner HG, Nelen MR, Zandvoort v P et al. (1993) X-Linked borderline mental retardation with prominent behavioural disturbance: phenotype, genetic localisation, and evidence for disturbed monoamine metabolism. Am J Hum Genet 52:1032–1039

    PubMed  CAS  Google Scholar 

  50. Cohen IL, Liu X, Schutz C et al. (2003) Association of autism severity with a monoamine oxidase A functional polymorphism. Clin Genet 64:190–197

    Article  PubMed  CAS  Google Scholar 

  51. Meyer-Lindenberg, A., Buckholtz JW, Kolachana B et al. (2006) Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc Natl Acad Sci USA 103:6269–6274

    Article  PubMed  CAS  Google Scholar 

  52. Guo G, Ou X-M, Roettger M et al. (2008) The VNTR 2 repeat in MAOA and delinquent behavior in adolescence and young adulthood: associations and MAOA promoter activity. Eur J Hum Genet 16:626–634

    Article  PubMed  CAS  Google Scholar 

  53. McDermott R, Tingley D, Cowden J et al. (2009) Monoamine oxidase A gene (MAOA) predicts behavioral aggression following provocation. Proc Natl Acad Sci USA 106:2118–2123

    Article  PubMed  CAS  Google Scholar 

  54. Lenders JWM, Eisenhofer G, Abeling NGGM et al. (1966) Specific genetic deficiencies of the A and B isoenzymes of monoamine oxidase are characterised by distinct neurochemical and clinical phenotypes. J Clin Invest 97:1010–1019

    Article  Google Scholar 

  55. Abeling NGGM, Gennip v AH, Cruchten v AG et al. (1998) Monoamine oxidase A deficiency: biogenic amine metabolites in random urine samples. J Neural Transm [Suppl] 52:9–15

    CAS  Google Scholar 

  56. Ichinose H, Ohye T, Takahashi E et al. (1994) Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations in the GTP cyclohydrolase I gene. Nat Genet 8:236–242

    Article  PubMed  CAS  Google Scholar 

  57. Segawa M, Hosaka A, Miyagawa F et al. (1976) Hereditary progressive dystonia with marked diurnal fluctuation. Adv Neurol 14:215–233

    PubMed  CAS  Google Scholar 

  58. Deonna T (1986) DOPA-sensitive progressive dystonia of childhood with fluctuations of symptoms – Segawa’s syndrome and possible variants. Results of a collaborative study of the European Federation of Child Neurology Societies (EFCNS). Neuropediatrics 17:81–85

    Article  PubMed  CAS  Google Scholar 

  59. Segawa M (2009) Autosomal dominant GTP cyclohydrolase I (AD GCH 1) deficiency (Segawa disease, dystonia 5; DYT 5). Chang Gung Med J 32:1–11

    PubMed  Google Scholar 

  60. Dale RC, Melchers A, Fung VS et al. (2010) Familial paroxysmal exercise-induced dystonia: atypical presentation of autosomal dominant GTP-cyclohydrolase 1 deficiency. Dev Med Child Neurol 52:583–586

    Article  PubMed  Google Scholar 

  61. Horvath GA, Stöckler-Ipsiroglu SG, Salvarinova-Zivkovic R et al. (2008) Autosomal recessive GTP cyclohydrolase I deficiency without hyperphenylalaninemia: evidence of a phenotypic continuum between dominant and recessive forms. Mol Genet Metab 94:127–131

    Article  PubMed  CAS  Google Scholar 

  62. Nardocci N, Zorzi G, Blau N et al. (2003) Neonatal dopa-responsive extrapyramidal syndrome in twins with recessive GTPCH deficiency. Neurology 60:335–337

    PubMed  CAS  Google Scholar 

  63. Hwu WL, Wang PJ, Hsiao KJ et al. (1999) Dopa-responsive dystonia induced by a recessive GTP cyclohydrolase I mutation. Hum Genet 105:226–230

    Article  PubMed  CAS  Google Scholar 

  64. Furukawa Y, Kish SJ, Bebin EM et al. (1998) Dystonia with motor delay in compound heterozygotes for GTP-cyclohydrolase I gene mutations. Ann Neurol 44:10–16-

    Article  PubMed  CAS  Google Scholar 

  65. Verbeek MM, Willemsen MAAP, Wevers RA et al. (2008) Two Greek siblings with sepiapterin reductase deficiency. Mol. Genet Metab 94:403–409

    Article  CAS  Google Scholar 

  66. Kurian MA, Li Y, Zhen J, Meyer E et al. (2011) Clinical and molecular characterisation of hereditary dopamine transporter deficiency syndrome: an observational cohort and experimental study. Lancet Neurol 10:54–62

    Article  PubMed  CAS  Google Scholar 

  67. Serrano M, Pérez-Dueñas B, Ormazábal A et al. (2008) Levodopa therapy in a Lesch-Nyhan disease patient: pathological, biochemical, neuroimaging, and therapeutic remarks. Mov Disord 15;23:1297–300

    Article  Google Scholar 

  68. García-Cazorla A, Duarte S, Serrano M et al. (2008) Mitochondrial diseases mimicking neurotransmitter defects. Mitochondrion 8:273–278

    Article  PubMed  Google Scholar 

  69. De Grandis E, Serrano M, Pérez-Dueñas B et al. (2010) Cerebrospinal fluid alterations of the serotonin product, 5-hydroxyindolacetic acid, in neurological disorders. J Inherit Dis 33:803–809

    Article  Google Scholar 

  70. Nuytemans K, Theuns J, Cruts M et al. (2010) Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum Mutat 31:763–780

    Article  PubMed  CAS  Google Scholar 

  71. Appenzeller S, Schirmacher A, Halfter H et al. (2010) Autosomaldominant striatal degeneration is caused by a mutation in the phosphodiesterase 8B gene. Am J Hum Genet. 86:83–87

    Article  PubMed  CAS  Google Scholar 

  72. Di Fonzo A, Dekker MC, Montagna P et al. (2009) FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology 72:240–245

    Article  PubMed  Google Scholar 

  73. Hunt AD, Stokes J, McCrory WW, Stroud HH (1954) Pyridoxine dependency: report of a case of intractable convulsions in an infant controlled by pyridoxine. Pediatrics 13:140–145

    PubMed  CAS  Google Scholar 

  74. Baxter P (ed) (2001) Pyridoxine dependent and pyridoxine responsive conditions in paediatric neurology. MacKeith Press, London, for International Child Neurology Association, pp 109–165

    Google Scholar 

  75. Basura GJ, Hagland SP, Wiltse AM et al. (2009) Clinical features and the management of pyridoxine-dependent and pyridoxineresponsive seizures: review of 63 North American cases submitted to a patient registry. Eur J Pediatr 168:697–704

    Article  PubMed  Google Scholar 

  76. Mills PB, Footitt EJ, Mills KA et al. (2010) Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency). Brain 133:2148–2159

    Article  PubMed  Google Scholar 

  77. Plecko B, Stöckler-Ipsiroglu S, Paschke E et al. (2000) Pipecolic acid elevation in plasma and cerebrospinal fluid of two patients with pyridoxine-dependent epilepsy. Ann Neurol 48:121–125

    Article  PubMed  CAS  Google Scholar 

  78. Mills PB, Struys E, Jakobs C et al. (2006) Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat Med 12:307–309

    Article  PubMed  CAS  Google Scholar 

  79. Cormier-Daire V, Dagonedu N, Nabbout R et al. (2000) A gene for pyridoxine-dependent epilepsy maps to chromosome 5q31. Am J Hum Genet 67:991–993

    Article  PubMed  CAS  Google Scholar 

  80. Mills PB, Surtees RAH, Champion MP et al. (2005) Neonatal epileptic encephalopathy caused by mutations in the PNPO gene encoding pyridox(am)ine 5’-phosphate oxidase. Hum Mol Genet 14:1077–1086

    Article  PubMed  CAS  Google Scholar 

  81. Wang HS, Kuo MF, Chou ML et al. (2005) Pyridoxal phosphate is better than pyridoxine for controlling idiopathic intractable epilepsy. Arch Dis Child 90:512–515

    Article  PubMed  Google Scholar 

  82. Hoffmann GF, Schmitt B, Windfuhr M et al. (2006) Pyridoxal 5 ‘-phosphate may be curative in early-onset epileptic encephalopathy. J Inherit Metab Dis 30:96–99

    Article  PubMed  Google Scholar 

  83. Khayat M, Korman SH, Frankel P et al. (2008) PNPO deficiency: an under-diagnosed inborn error of pyridoxine metabolism. Mol Genet Metab 94:431–434

    Article  PubMed  CAS  Google Scholar 

  84. Ruiz A, Garcia-Villoria J, Ormazabal A et al. (2008) A new fatal case of pyridox(am)ine 5’-phosphate oxidase (PNPO) deficiency. Mol Genet Metab 93:216–218

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

García-Cazorla, À., Gibson, K., Clayton, P.T. (2012). Disorders of Neurotransmission. In: Saudubray, JM., van den Berghe, G., Walter, J.H. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15720-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15720-2_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15719-6

  • Online ISBN: 978-3-642-15720-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics