Skip to main content

New Protocol for Muscle Injury Treatment

  • Chapter
  • First Online:
Sports Injuries

Abstract

The most common pathology in sports is muscle injury. There are several reasons to establish a new Protocol for the treatment of muscle injuries: there is no such thing as a single criterion that says how and when treatments or certain patterns of treatment need to be applied; there are several classifications of nonhomogeneous muscle injuries [13] with a great variety of interobserver; patterns of treatment have been based on individual medical experience rather than scientific homogeneous reproducible criteria. As a consequence, functional results have proven diverse, unpredictable, and unforeseeable. Goal is to elaborate a Protocol to reconcile and combine the therapeutical process by applying actual knowledge on biophysiology which will eventually set up a plan of treatment based on temporary biological criteria of muscle repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alonso, J.M., Guillén, P.: Tratamiento conservador de las lesiones músculo tendinosas. Medicine 7, 6579–6583 (1999)

    Google Scholar 

  2. Ambrosio, F., Kadi, F., Lexell, J., Fitzgerald, G.K., Boninger, M.L., Huard, J.: The effect of muscle loading on skeletal muscle regenerative potential: an update of current research findings relating to aging and neuromuscle pathology. Am. J. Phys. Med. Rehabil. 88, 145–155 (2009)

    Article  PubMed  Google Scholar 

  3. Aoi, W., Naito, Y., Nakamura, T., Akagiri, S., Masuyama, A., Takano, T., Mizushima, K., Yoshikawa, T.: Inhibitory effect of fermented milk on delayed-onset muscle damage after exercise. J. Nutr. Biochem. 18, 140–145 (2007)

    Article  PubMed  CAS  Google Scholar 

  4. Bedair, H.S., Karthikeyan, T., Quintero, A., Li, Y., Huard, J.: Angiotensin II receptor blockade administered after injury improves muscle regeneration and decreases fibrosis in normal skeletal muscle. Am. J. Sports Med. 36, 1929–1936 (2008)

    Article  Google Scholar 

  5. Bedair, H., Liu, T.T., Kaar, J.L., Badlani, S., Russell, A.J., Li, Y., Huard, J.: Matrix metalloproteinase-1 therapy improves muscle healing. J. Appl. Physiol. 102, 2338–2345 (2007)

    Article  PubMed  CAS  Google Scholar 

  6. Brack, A.S., Conboy, M.J., Roy, S., Lee, M., Kuo, C.J., Keller, C., Rando, T.A.: Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317, 807–810 (2007)

    Article  PubMed  CAS  Google Scholar 

  7. Brzóska, E., Grabowska, I., Hoser, G., Stremi?ska, W., Wasilewska, D., Machaj, E.K., Pojda, Z., Moraczewski, J., Kawiak, J.: Participation of stem cells from human cord blood in skeletal muscle regeneration of SCID mice. Exp. Hematol. 34, 1262–1270 (2006)

    Article  PubMed  Google Scholar 

  8. Chan, Y.S., Li, Y., Foster, W., Fu, F.H., Huard, J.: The use of suramin, an antifibrotic agent, to improve muscle recovery after strain injury. Am. J. Sports Med. 33, 43–51 (2005)

    Article  PubMed  Google Scholar 

  9. Concejero, V., Guillén, P., Fernández-Jaén, T.F.: Clínica y tratamiento de las lesiones musculotendinosas en el deporte. Medicine 7, 6568–6573 (1999)

    Google Scholar 

  10. Creaney, L., Hamilton, B.: Growth factor delivery methods in the management of sports injuries: the state of play. Br. J. Sports Med. 42, 314–320 (2008)

    Article  PubMed  CAS  Google Scholar 

  11. De Coppi, P., Bellini, S., Conconi, M.T., Sabatti, M., Simonato, E., Gamba, P.G., Nussdorfer, G.G., Parnigotto, P.P.: Myoblast-acellular skeletal muscle matrix constructs guarantee a long-term repair of experimental full-thickness abdominal wall defects. Tissue Eng. 12, 1929–1936 (2006)

    Article  PubMed  Google Scholar 

  12. Doukas, J., Blease, K., Craig, D., Ma, C., Chandler, L.A., Sosnowski, B.A., Pierce, G.F.: Delivery of FGF genes to wound repair cells enhances arteriogenesis and myogenesis in skeletal muscle. Mol. Ther. 5, 517–527 (2002)

    Article  PubMed  CAS  Google Scholar 

  13. Fernández Jaén, T.F.: Protocolo de actuación ante una lesión aguda músculo tendinosa en el deporte. Revista de traumatología del Deporte. 1, Púb. Internet (2008) http://rtd.ucam.edu/

  14. Floss, T., Arnold, H.H., Braun, T.: A role for FGF-6 in skeletal muscle regeneration. Genes Dev. 11, 2040–2051 (1997)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Garrido, J.J., Guillén, P.: Etiología de las lesiones músculo tendinosas. Medicine 7, 6565–6567 (1999)

    Google Scholar 

  16. Greig, M., Siegler, J.C.: Soccer-specific fatigue and eccentric hamstrings muscle strength. J. Athl. Train. 44, 180–184 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  17. Guillen, P., Fernández Jaén, T.F., Fernández Jiménez, M.A., Guillén, I.: Diagnóstico de las lesiones musculares. Traumatol. Deporte 1, 31–34 (2003)

    Google Scholar 

  18. Guillen, P., Fernández Jaén, T.F., Guillén, I., Fernández Jimenez, M.A.: Clínica de las lesiones musculares. Traumatol. Deporte 1, 35–38 (2003)

    Google Scholar 

  19. Guillen, P., Garrido, J.J., Fernández Jaén, T.F.: Etiopatogenia de las lesiones musclees. Traumatol. Deporte 0, 37–39 (2002)

    Google Scholar 

  20. Hammond, J.W., Hinton, R.Y., Curl, L.A., Muriel, J.M., Lovering, R.M.: Use of autologous platelet-rich plasma to treat muscle strain injuries. Am. J. Sports Med. 37(6), 1135–1142 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  21. Herrador, M.A.: Lesiones musculares del futbolista. Lesiones del fútbol. Patología e historia. IMXC, 19–21 (1996)

    Google Scholar 

  22. Huard, J., Li, Y., Fu, F.: Muscle injuries and repair: current trends in research. J. Bone Joint Surg. Am. 84, 822–832 (2002)

    PubMed  Google Scholar 

  23. Ishida, W., Mori, Y., Lakos, G., Sun, L., Shan, F., Bowes, S., Josiah, S., Lee, W.C., Singh, J., Ling, L.E., Varga, J.: Intracellular TGF-beta receptor blockade abrogates Smad-dependent fibroblast activation in vitro and in vivo. J. Invest. Dermatol. 126, 1733–1744 (2006)

    Article  PubMed  CAS  Google Scholar 

  24. Jaroszewski, J., Bakowski, P., Tabiszewski, M.: Latest standards of muscle injury prophylactic activities, treatment and rehabilitation. Chir. Narzadów Ruchu Ortop. Pol. 73, 377–380 (2008)

    PubMed  Google Scholar 

  25. Järvinen, T., Järvinen, T., Käätiänien, M., Kalimo, H., Järvinen, M.A.: Muscle injuries: biology and treatment. Am. J. Sports Med. 33, 745–764 (2005)

    Article  PubMed  Google Scholar 

  26. Jiménez-Diaz, F.: Muscle injuries in sport. Int. J. Sport Sci. 2, 55–67 (2006)

    Google Scholar 

  27. Kanangat, S., Postlethwaite, A.E., Higgins, G.C., Hasty, K.A.: Novel functions of intracellular IL-1ra in human dermal fibroblasts: implications in the pathogenesis of fibrosis. J. Invest. Dermatol. 126, 756–765 (2006)

    Article  PubMed  CAS  Google Scholar 

  28. Lai, X.N., Wang, Z.G., Zhu, J.M., Wang, L.L.: Effect of substance P on gene expression of transforming growth factor beta-1 and its receptors in rat’s fibroblasts. Chin. J. Traumatol. 6, 350–354 (2003)

    PubMed  CAS  Google Scholar 

  29. Langsdorf, A., Do, A.T., Kusche-Gullberg, M., Emerson Jr., C.P., Ai, X.: Sulfs are regulators of growth factor signaling for satellite cell differentiation and muscle regeneration. Dev. Biol. 311, 464–477 (2007)

    Article  PubMed  CAS  Google Scholar 

  30. LeClair, R.J., Durmus, T., Wang, Q., Pyagay, P., Terzic, A., Lindner, V.: Cthrc1 is a novel inhibitor of transforming growth factor-beta signaling and neointimal lesion formation. Circ. Res. 100, 826–833 (2007)

    Article  PubMed  CAS  Google Scholar 

  31. Li, Y., Wen, X., Spataro, B.C., Hu, K., Dai, C., Liu, Y.: Hepatocyte growth factor is a downstream effector that mediates the antifibrotic action of peroxisome proliferator-activated receptor-gamma agonists. J. Am. Soc. Nephrol. 17, 54–65 (2006)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Maeda, K., Kanda, F., Okuda, S., Ishihara, H., Chihara, K.: Transforming growth factor-beta enhances connective tissue growth factor expression in L6 rat skeletal myotubes. Neuromuscul. Disord. 27, 234–240 (2005)

    Google Scholar 

  33. Magee, T.R., Artaza, J.N., Ferrini, M.G., Vernet, D., Zuniga, F.I., Cantini, L., Reisz-Porszasz, S., Rajfer, J., Gonzalez-Cadavid, N.F.: Myostatin short interfering hairpin RNA gene transfer increases skeletal muscle mass. J. Gene Med. 8, 1171–1178 (2006)

    Article  PubMed  CAS  Google Scholar 

  34. Mourkioti, F., Kratsios, P., Luedde, T., Song, Y.H., Delafontaine, P., Adami, R., Parente, V., Bottinelli, R., Pasparakis, M., Rosenthal, N.: Targeted ablation of IKK2 improves skeletal muscle strength, maintains mass, and induces regeneration. J. Clin. Invest. 116, 2866–2868 (2006)

    Article  Google Scholar 

  35. Negishi, S., Li, Y., Usas, A., Fh, Fu, Huard, J.: The effect of relaxin treatment on skeletal muscle injuries. Am. J. Sports Med. 33, 1816–1824 (2005)

    Article  PubMed  Google Scholar 

  36. Ochoa, O., Sun, D., Reyes-Reyna, S.M., Waite, L.L., Michalek, J.E., McManus, L.M., Shireman, P.K.: Delayed angiogenesis and VEGF production in CCR2-/- mice during impaired skeletal muscle regeneration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, 651–661 (2007)

    Article  Google Scholar 

  37. Okunieff, P., Xu, J., Hu, D., Liu, W., Zhang, L., Morrow, G., Pentland, A., Ryan, J.L., Ding, I.: Curcumin protects against radiation-induced acute and chronic cutaneous toxicity in mice and decreases mRNA expression of inflammatory and fibrogenic cytokines. Int. J. Radiat. Oncol. Biol. Phys. 65, 890–898 (2006)

    Article  PubMed  CAS  Google Scholar 

  38. Orchard, J.: Management of muscle and tendón injuries in footballers. Aust. Fam. Physician 32, 489–493 (2003)

    PubMed  Google Scholar 

  39. Payne, T.R., Oshima, H., Okada, M., Momoi, N., Tobita, K., Keller, B.B., Peng, H., Huard, J.: A relationship between vascular endothelial growth factor, angiogenesis, and cardiac repair after muscle stem cell transplantation into ischemic hearts. J. Am. Coll. Cardiol. 50, 1685–1687 (2007)

    Article  Google Scholar 

  40. Quinn, L.S., Anderson, B.G., Plymate, S.R.: Muscle-specific overexpression of the type-1 IGF receptor results in myoblast-independent muscle hypertrophy via PI3-K, and not calcineurin, signaling. Am. J. Physiol. Endocrinol. Metab. 293, 1538–1551 (2007)

    Article  Google Scholar 

  41. Quintero, A.J., Wright, V.J., Fu, F.H., Huard, J.: Stem cells for the treatment of skeletal muscle injury. Clin. Sports Med. 28, 1–11 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rönty, M.J., Leivonen, S.K., Hinz, B., Rachlin, A., Otey, C.A., Kähäri, V.M., Carpén, O.M.: Isoform-specific regulation of the actin-organizing protein palladin during TGF-beta1-induced myofibroblast differentiation. J. Invest. Dermatol. 126, 2387–2396 (2006)

    Article  PubMed  Google Scholar 

  43. Schertzer, J.D., Lynch, G.S.: Comparative evaluation of IGF-I gene transfer and IGF-I protein administration for enhancing skeletal muscle regeneration after injury. Gene Ther. 13, 1657–1664 (2006)

    Article  PubMed  CAS  Google Scholar 

  44. Shen, W., Li, Y., Tang, Y., Cummins, J., Huard, J.: NS-398, a cyclooxygenase-2-specific inhibitor, delays skeletal muscle healing by decreasing regeneration and promoting fibrosis. Am. J. Pathol. 167, 1105–1117 (2005)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Shi, M., Ishikawa, M., Kamei, N., Nakasa, T., Adachi, N., Deie, M., Asahara, T., Ochi, M.: Acceleration of skeletal muscle regeneration in a rat skeletal muscle injury model by local injection of human peripheral blood-derived CD133-positive cells. Stem Cells 27, 949–960 (2009)

    Article  PubMed  CAS  Google Scholar 

  46. Shi, Y.F., Zhang, Q., Cheung, P.Y., Shi, L., Fong, C.C., Zhang, Y., Tzang, C.H., Chan, B.P., Fong, W.F., Chun, J., Kung, H.F., Yang, M.: Effects of rhDecorin on TGF-beta1 induced human hepatic stellate cells LX-2 activation. Biochim. Biophys. Acta 1760, 1587–1595 (2006)

    Article  PubMed  CAS  Google Scholar 

  47. Shibata, M., Matsumoto, K., Aikawa, K., Muramoto, T., Fujimura, S., Kadowaki, M.: Gene expression of myostatin during development and regeneration of skeletal muscle in Japanese Black Cattle. J. Anim. Sci. 84, 2983–2989 (2006)

    Article  PubMed  CAS  Google Scholar 

  48. Siriett, V., Salerno, M.S., Berry, C., Nicholas, G., Bower, R., Kambadur, R., Sharma, M.: Antagonism of myostatin enhances muscle regeneration during sarcopenia. Mol. Ther. 15, 1407–1409 (2007)

    Article  Google Scholar 

  49. Smith, C.A., Stauber, F., Waters, C., Alway, S.E., Stauber, W.T.: Transforming growth factor-beta following skeletal muscle strain injury in rats. J. Appl. Physiol. 102, 755–761 (2007)

    Article  PubMed  CAS  Google Scholar 

  50. Strasser, E.M., Wessner, B., Roth, E.: Cellular regulation of anabolism and catabolism in skeletal muscle during immobilisation, aging and critical illness. Wien. Klin. Wochenschr. 119, 337–348 (2007)

    Article  PubMed  CAS  Google Scholar 

  51. Summan, M., Warren, G.L., Mercer, R.R., Chapman, R., Hulderman, T., Van Rooijen, N., Simeonova, P.P.: Macrophages and skeletal muscle regeneration: a clodronate-containing liposome depletion study. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, 1488–1495 (2006)

    Article  Google Scholar 

  52. Suzuki, K., Peake, J., Nosaka, K., Okutsu, M., Abbiss, C.R., Surriano, R., Bishop, D., Quod, M.J., Lee, H., Martin, D.T., Laursen, P.B.: Changes in markers of muscle damage, inflammation and HSP70 after an ironman triathlon race. Eur. J. Appl. Physiol. 98, 525–534 (2006)

    Article  PubMed  CAS  Google Scholar 

  53. Torrente, Y., El Fahime, E., Caron, N.J., Del Bo, R., Belicchi, M., Pisati, F., Tremblay, J.P., Bresolin, N.: Tumor necrosis factor-alpha (TNF-alpha) stimulates chemotactic response in mouse myogenic cells. Cell Transplant. 12, 91–100 (2003)

    Article  PubMed  CAS  Google Scholar 

  54. Toumi, H., F’guyer, S., Best, T.M.: The role of neutrophils in injury and repair following muscle stretch. J. Anat. 208, 459–470 (2006)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Uutela, M., Wirzenius, M., Paavonen, K., et al.: PDGF-D induces macrophage recruitment, increased interstitial pressure, and blood vessel maturation during angiogenesis. Blood 104, 3198–204 (2004)

    Article  PubMed  CAS  Google Scholar 

  56. Vega, A.: Tratamiento con electroterapia y masoterapia simultanea. Lesiones deportiva Ed. Mapfre Med. 269–274 (1996)

    Google Scholar 

  57. Viita, H., Markkanen, J., Eriksson, E., Nurminen, M., Kinnunen, K., Babu, M., Heikura, T., Turpeinen, S., Laidinen, S., Takalo, T., Ylä-Herttuala, S.: 15-Lipoxygenase-1 prevents vascular endothelial growth factor A and placental growth factor induced angiogenic effects in rabbit skeletal muscles via reduction in growth factor mRNA levels, NO bioactivity, and downregulation of VEGF receptor 2 expression. Circ. Res. 102, 177–184 (2008)

    Article  PubMed  CAS  Google Scholar 

  58. Wagner, K.R., Liu, X., Chang, X., Allen, R.E.: Muscle regeneration in the prolonged absence of myostatin. Proc. Natl Acad. Sci. USA 102, 2519–2524 (2005)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Wehling, P., Moser, C., Frisbie, D., McIlwraith, C.W., Kawcak, C.E., Krauspe, R., Reinecke, J.A.: Autologous conditioned serum in the treatment of orthopedic diseases: the orthokine therapy. BioDrugs 21, 323–332 (2007)

    Article  PubMed  CAS  Google Scholar 

  60. Welle, S., Bhatt, K., Pinkert, C.A., Tawil, R., Thornton, C.A.: Muscle growth after postdevelopmental myostatin gene knockout. Am. J. Physiol. Endocrinol. Metab. 292, E985–E991 (2007)

    Article  PubMed  CAS  Google Scholar 

  61. Willecke, K., Sáez, J.C.: Injury of skeletal muscle and specific cytokines induce the expression of gap junction channels in mouse dendritic cells. J. Cell. Physiol. 211, 649–660 (2007)

    Article  PubMed  Google Scholar 

  62. Zhu, J., Li, Y., Shen, W., Qiao, C., Ambrosio, F., Lavasani, M., Nozaki, M., Branca, M.F., Huard, J.: Relationships between transforming growth factor-beta1, myostatin, and decorin: implications for skeletal muscle fibrosis. J. Biol. Chem. 282, 25852–25863 (2007)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Carlos Revilla, MD. Clínica CEMTRO, Madrid, Spain.

Prof. Pedro Cuevas. Hospital Ramon y Cajal, Madrid, Spain.

Antonio Manquillo, MD. Clínica CEMTRO, Madrid, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás F. Fernandez Jaén .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jaén, T.F.F., García, P.G. (2012). New Protocol for Muscle Injury Treatment. In: Doral, M. (eds) Sports Injuries. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15630-4_114

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15630-4_114

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15629-8

  • Online ISBN: 978-3-642-15630-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics