Skip to main content

Online Self-reorganizing Neuro-fuzzy Reasoning in Interval-Forecasting for Financial Time-Series

  • Conference paper
Book cover PRICAI 2010: Trends in Artificial Intelligence (PRICAI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6230))

Included in the following conference series:

Abstract

“The only thing constant is change.”—Ray Kroc (Founder of McDonald’s). Self-organizing neuro-fuzzy machines are maturing in their online learning process for time-invariant conditions. To, however, maximize the operative value of these self-organizing approaches for online-reasoning, such self-sustaining mechanisms must embed capabilities that aid the reorganizing of knowledge structures in real-time dynamic environments. Also, neuro-fuzzy machines are well-regarded as approximate reasoning tools because of their strong tolerance to imprecision and handling of uncertainty. Recently, Tan and Quek (2010) discussed an online self-reorganizing neuro-fuzzy approach called SeroFAM for financial time-series forecasting. The approach is based on the BCM theory of neurological learning via metaplasticity principles (Bienenstock et al., 1982), which addresses the stability limitations imposed by the monotonic behavior in Hebbian theory for online learning (Rochester et al., 1956). In this paper, we examine an adapted version called iSeroFAM for interval-forecasting of financial time-series that follows a computational efficient approach adapted from Lalla et al. (2008) and Carlsson and Fuller (2001). An experimental proof-of-concept is presented for interval-forecasting of 80 years of Dow Jones Industrial Average Index, and the preliminary findings are encouraging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, W.C., Goddard, G.V.: Asymmetric relationships between homosynaptic long-term potentiation and heterosynaptic depression. Nature 305, 717–719 (1983)

    Article  Google Scholar 

  2. Angelov, P.P., Filev, D.P.: An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Trans. Syst. Man Cybern. B 34(1), 484–498 (2004)

    Article  Google Scholar 

  3. Angelov, P.P., Filev, D.P.: Simpl_eTS: a simplified method for learning evolving Takagi-Sugeno fuzzy models. In: Proc. 14th IEEE Int. Conf. Fuzzy Syst., FUZZ-IEEE 2005, Reno, NV, pp. 1068–1073 (2005)

    Google Scholar 

  4. Bienenstock, E.L., Cooper, L.N., Munro, P.W.: A theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32–48 (1982)

    Google Scholar 

  5. Bliss, T.V.P., Lømo, T.: Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 331–356 (1973)

    Google Scholar 

  6. Carlsson, C., Fullér, R.: On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets Syst. 122(2), 315–326 (2001)

    Article  MATH  Google Scholar 

  7. Cooper, L.N., Intrator, N., Blais, B.S., Shouval, H.Z.: Theory of Cortical Plasticity. World Scientific, Singapore (2004)

    Book  MATH  Google Scholar 

  8. Goodwin, G.C., Sin, K.S.: Adaptive Filtering: Prediction and Control. Prentice-Hall, Englewood Cliffs (1984)

    MATH  Google Scholar 

  9. Haykin, S.: Adaptive Filter Theory. Prentice-Hall, Englewood Cliffs (1996)

    Google Scholar 

  10. Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  MathSciNet  Google Scholar 

  11. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing. Prentice Hall, Upper Saddle River (1997)

    Google Scholar 

  12. Kasabov, N.K.: Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning. IEEE Trans. Syst. Man Cybern. B 31(6), 902–918 (2001)

    Article  Google Scholar 

  13. Kasabov, N.K., Song, Q.: DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans. Fuzzy Syst. 10(2), 144–154 (2002)

    Article  Google Scholar 

  14. Lalla, M., Facchinetti, G., Mastroleo, G.: Vagueness evaluation of the crisp output in a fuzzy inference system. Fuzzy Sets Syst. (2008) (in Press)

    Google Scholar 

  15. Leng, G., Prasad, G., McGinnity, T.M.: An on-line algorithm for creating self-organizing fuzzy neural networks. Neural Netw. 17, 1477–1493 (2004)

    Article  MATH  Google Scholar 

  16. Lin, C.T., Lee, C.S.G.: Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems. Prentice Halls, Upper Saddle River (1996)

    Google Scholar 

  17. Mitra, S., Hayashi, Y.: Neuro-fuzzy rule generation: survey in soft computing framework. IEEE Trans. Neural Netw. 11(3), 748–768 (2000)

    Article  Google Scholar 

  18. Rochester, N., Holland, J., Haibt, L., Duda, W.: Tests on a cell assembly theory of the action of the brain, using a large scale digital computer. IRE Trans. Inf. Theory IT-2, 80–93 (1956)

    Article  Google Scholar 

  19. Rong, H.J., Sundararajan, N., Huang, G.B., Saratchandran, P.: Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction. Fuzzy Sets Syst. 157, 1260–1275 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Stanton, P.K., Sejnowski, T.J.: Associative long-term depression in the hippocampus induced by Hebbian covariance. Nature 339, 215–218 (1989)

    Article  Google Scholar 

  21. Tan, J., Quek, C.: Adaptive training schema in Mamdani-type neuro-fuzzy models for data-analysis in dynamic system forecasting. In: Liu, D. (ed.) Proc. 2008 Int. Joint Conf. Neural Netw., IJCNN 2008, HongKong, pp. 1734–1739 (2008)

    Google Scholar 

  22. Tan, J., Quek, C.: A BCM-theory of meta-plasticity for online self-reorganizing fuzzy-associative learning. IEEE Trans. Neural Netw. 21(6), 985–1003 (2010)

    Article  Google Scholar 

  23. Tickle, A.B., Andrews, R., Golea, M., Diederich, J.: The truth will come to light: directions and challenges in extracting the knowledge embedded within trained artificial neural networks. IEEE Trans. Neural Netw. 9(6), 1057–1068 (1998)

    Article  Google Scholar 

  24. Wang, W., Vrbanek, J.: A multi-step predictor for dynamic system property forecasting. Measurement Sci. Technol. 18(12), 3673–3681 (2007)

    Article  Google Scholar 

  25. Watts, M.J.: A decade of Kasabov’s evolving connectionist systems: a review. IEEE Trans. Syst. Man Cybern. C, Appl. Rev. 39(3), 253–269 (2009)

    Article  Google Scholar 

  26. Wu, S., Er, M.J.: Dynamic fuzzy neural networks: a novel approach to function approximation. IEEE Trans. Syst. Man Cybern. B 30(2), 358–364 (2000)

    Article  Google Scholar 

  27. Zadeh, L.A.: Soft computing and fuzzy logic. IEEE Softw. 11(6), 48–56 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tan, J., Quek, C. (2010). Online Self-reorganizing Neuro-fuzzy Reasoning in Interval-Forecasting for Financial Time-Series. In: Zhang, BT., Orgun, M.A. (eds) PRICAI 2010: Trends in Artificial Intelligence. PRICAI 2010. Lecture Notes in Computer Science(), vol 6230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15246-7_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15246-7_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15245-0

  • Online ISBN: 978-3-642-15246-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics