Skip to main content

Representation Formulae for the Fractional Brownian Motion

  • Chapter
  • First Online:
Book cover Séminaire de Probabilités XLIII

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 2006))

Abstract

We discuss the relationships between some classical representations of the fractional Brownian motion, as a stochastic integral with respect to a standard Brownian motion, or as a series of functions with independent Gaussian coefficients. The basic notions of fractional calculus which are needed for the study are introduced. As an application, we also prove some properties of the Cameron–Martin space of the fractional Brownian motion, and compare its law with the law of some of its variants. Several of the results which are given here are not new; our aim is to provide a unified treatment of some previous literature, and to give alternative proofs and additional results; we also try to be as self-contained as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arcones, M.A.: On the law of the iterated logarithm for Gaussian processes. J. Theor. Probab. 8(4), 877–903 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baudoin, F., Nualart, D.: Equivalence of Volterra processes. Stoch. Process. Appl. 107(2), 327–350 (2003)

    Article  MathSciNet  Google Scholar 

  3. Bogachev, V.I.: Gaussian measures. Mathematical Surveys and Monographs, vol. 62. American Mathematical Society, Providence, RI (1998)

    Google Scholar 

  4. Cheridito, P.: Mixed fractional Brownian motion. Bernoulli 7(6), 913–934 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheridito, P., Kawaguchi, H., Maejima, M.: Fractional Ornstein–Uhlenbeck processes. Electron. J. Probab. 8(3), 14 (2003)

    MathSciNet  Google Scholar 

  6. Coutin, L., Qian, Z.: Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Relat. Field. 122(1), 108–140 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Darses, S., Saussereau, B.: Time reversal for drifted fractional Brownian motion with Hurst index H > 1 ∕ 2. Electron. J. Probab. 12(43), 1181–1211 (electronic) (2007)

    Google Scholar 

  8. Decreusefond, L., Üstünel, A.S.: Stochastic analysis of the fractional Brownian motion. Potential Anal. 10(2), 177–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dzhaparidze, K., van Zanten, H.: A series expansion of fractional Brownian motion. Probab. Theory Relat. Field. 130(1), 39–55 (2004)

    MATH  Google Scholar 

  10. Feldman, J.: Equivalence and perpendicularity of Gaussian processes. Pac. J. Math. 8, 699–708 (1958)

    MATH  Google Scholar 

  11. Feyel, D., de La Pradelle, A.: On fractional Brownian processes. Potential Anal. 10(3), 273–288 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gilsing, H., Sottinen, T.: Power series expansions for fractional Brownian motions. Theory Stoch. Process. 9(3-4), 38–49 (2003)

    MathSciNet  Google Scholar 

  13. Gripenberg, G., Norros, I.: On the prediction of fractional Brownian motion. J. Appl. Probab. 33(2), 400–410 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gross, L.: Abstract Wiener spaces. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (Berkeley, California, 1965/66), vol. II: Contributions to Probability Theory, Part 1, pp. 31–42. University California Press, Berkeley, CA (1967)

    Google Scholar 

  15. Hájek, J.: On a property of normal distribution of any stochastic process. Czech. Math. J. 8(83), 610–618 (1958)

    Google Scholar 

  16. Hida, T., Hitsuda, M.: Gaussian processes. Translations of Mathematical Monographs, vol. 120. American Mathematical Society, Providence, RI (1993)

    Google Scholar 

  17. Iglói, E.: A rate-optimal trigonometric series expansion of the fractional Brownian motion. Electron. J. Probab. 10, 1381–1397 (2005)

    Article  MathSciNet  Google Scholar 

  18. Istas, J.: Spherical and hyperbolic fractional Brownian motion. Electron. Commun. Probab. 10, 254–262 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Itô, K., Nisio, M.: On the convergence of sums of independent Banach space valued random variables. Osaka J. Math. 5, 35–48 (1968)

    MathSciNet  MATH  Google Scholar 

  20. Jost, C.: Transformation formulas for fractional Brownian motion. Stoch. Process. Appl. 116(10), 1341–1357 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jost, C.: A note on ergodic transformations of self-similar Volterra Gaussian processes. Electron. Commun. Probab. 12, 259–266 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jost, C.: On the connection between Molchan–Golosov and Mandelbrot–Van Ness representations of fractional Brownian motion. J. Integral Equat. Appl. 20(1), 93–119 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kakutani, S.: On equivalence of infinite product measures. Ann. Math. 49(2), 214–224 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kolmogorov, A.: Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. Dokl. Akad. Nauk. SSSR 26, 115–118 (1940)

    Google Scholar 

  25. Lévy, P.: Sur une classe de courbes de l’espace de Hilbert et sur une équation intégrale non linéaire. Ann. Sci. Ecole Norm. Sup. 73(3), 121–156 (1956)

    MathSciNet  MATH  Google Scholar 

  26. Mandelbrot, B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  27. Marinucci, D., Robinson, P.M.: Alternative forms of fractional Brownian motion. J. Stat. Plan. Infer. 80(1–2), 111–122 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Meyer, Y., Sellan, F., Taqqu, M.S.: Wavelets, generalized white noise and fractional integration: the synthesis of fractional Brownian motion. J. Fourier Anal. Appl. 5(5), 465–494 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Molchan, G.M.: Linear problems for fractional Brownian motion: a group approach. Theor. Probab. Appl. 47(1), 69–78 (2003)

    Article  MathSciNet  Google Scholar 

  30. Molchan, G.M., Golosov, Y.I.: Gaussian stationary processes with asymptotically power spectrum (in Russian). Dokl. Akad. Nauk. SSSR 184, 546–549 (1969)

    MathSciNet  Google Scholar 

  31. Norros, I., Saksman, E.: Local independence of fractional Brownian motion. Stoch. Process. Appl. 119, 3155—3172 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Norros, I., Valkeila, E., Virtamo, J.: An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli 5(4), 571–587 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Picard, J.: A tree approach to p-variation and to integration. Ann. Probab. 36(6), 2235–2279 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pipiras, V., Taqqu, M.S.: Are classes of deterministic integrands for fractional Brownian motion on an interval complete? Bernoulli 7(6), 873–897 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Yverdon (1993)

    MATH  Google Scholar 

  36. van der Vaart, A.W., van Zanten, J.H.: Reproducing kernel Hilbert spaces of Gaussian priors. In: Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh, Inst. Math. Stat. Collect., vol. 3, pp. 200–222. Inst. Math. Statist. Beachwood, OH (2008)

    Google Scholar 

  37. van Zanten, H.: When is a linear combination of independent fBm’s equivalent to a single fBm? Stoch. Process. Appl. 117(1), 57–70 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Picard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Picard, J. (2011). Representation Formulae for the Fractional Brownian Motion. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds) Séminaire de Probabilités XLIII. Lecture Notes in Mathematics(), vol 2006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15217-7_1

Download citation

Publish with us

Policies and ethics