Skip to main content

Abstract

Since castor bean (Ricinus communis L.) is a single-species genus in the Euphorbiaceae family, we will focus our discussion mainly on it. The USDA, ARS, Plant Genetic Resources Conservation Unit conserves more than 1,000 castor bean accessions from countries worldwide including the United States. Conservation efforts have been devoted to quality conservation of the genetic variation and diversity in castor bean. Castor bean seeds contain 35–55% of oil, which is proved to be safe and effective when used as a stimulant laxative. Castor bean could become one of the premier crops for health enhancing phytochemicals. An immunotoxin derived from castor bean constituents was successful in combination with chemotherapy in treating patients with AIDS-related non-Hodgkin’s lymphoma. In addition, castor bean is currently undergoing intense research in its development as a biodiesel crop in the United States. Cloning functional genes for ricin coupled with an understanding of ricin synthesis will provide an opportunity to manipulate these genes for ricin reduction in castor bean seeds through genetic engineering. As castor bean is not a food crop and can be grown in many landscapes, it can provide healthy products and biodiesel. In addition, the establishment of stable genetic transformants of castor bean will lead to further development of transgenic castor bean seeds in the future. Tissue culture and genetic transformation will assist in the breeding of superior germplasm and cultivars for use in the United States and abroad as a phytopharmaceutical and biodiesel crop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allan G, Williams A, Rabinowicz PD, Chan AP, Ravel J, Keim P (2008) Worldwide genotyping of castor bean germplasm (Ricinus communis L.) using AFLPs and SSRs. Genet Resour Crop Evol 55:365–378

    Article  CAS  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Audi J, Belson M, Patel M, Schier J, Osterloh J (2005) Ricin poisoning. A comprehensive review. JAMA 294:2342–2351

    Article  CAS  PubMed  Google Scholar 

  • Breese EL (1989) Regeneration and multiplication of germplasm resources in seed genebanks: the scientific background. International Board for Plant Genetic Resources, Rome, Italy, pp 1–69

    Google Scholar 

  • Chan AP, Redman J, Allan G, Keim P, Fraser C, Ravel J, Rabinowicz PD (2006) Whole genome analysis of castor bean (Ricinus communis). In: Plant and animal genome XIV conference, San Diego, CA, P32

    Google Scholar 

  • Classen CE, Hoffman A (1950) The inheritance of pistillate character in castor and its possible utilization in the production of commercial hybrid seed. J Am Soc Agron 42:79–82

    Google Scholar 

  • Conceicao MM, Candeia RA, Silva FC, Bezerra AF, Fernandes VJ Jr, Souza AG (2007) Thermoanalytical characterization of castor oil biodiesel. Renew Sustain Energy Rev 11:964–975

    Article  CAS  Google Scholar 

  • Da Silva NDL, Maciel W, Batistella CB, Filho RM (2006) Optimization of biodiesel production from castor oil. Appl Biochem Biotechnol 130:405–414

    Article  Google Scholar 

  • Edwards RL, Lyon T, Litwin SE, Rabovsky A, Symons JD, Jalili T (2007) Quercetin reduces blood pressure in hypertensive subjects. J Nutr 137:2405–2411

    CAS  PubMed  Google Scholar 

  • FDA (2003) OTC Drug review ingredient report. FDA database. FDA, Washington DC

    Google Scholar 

  • Fernald ML (1950) Euphorbiaceae. In: Gray’s manual of botany, 8th edn. American Book, New York, pp 958–972

    Google Scholar 

  • Goto E, Shimazaki J, Monden Y, Takano Y, Yagi Y, Shimmura S, Tsubota K (2002) Low-concentration homogenized castor oil eye drops for noninflamed obstructive meibomian gland dysfunction. Ophthalmology 109:2030–2035

    Article  PubMed  Google Scholar 

  • Gray M, Jones DP (2004) The effect of different formulations of equivalent active ingredients on the performance of two topical wound treatment products. Stormy Wound Manage 50:34–38

    Google Scholar 

  • Harlan JR (1987) Plant genetic resources: a conservation imperative. In: Yeatman CW, Kafton D, Wilkes G (eds) Westview. Boulder, CO, pp 111–129

    Google Scholar 

  • Hyten DL, Song Q, Zhu Y, Choi I, Nelson RL, Costa JM, Specht JE, Shoemaker RC, Cregan PB (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci USA 103:16666–16671

    Article  CAS  PubMed  Google Scholar 

  • Johnston W Jr (2007) Final report on the safety assessment of Ricinus communis (castor) seed oil, hydrogenated castor oil, glyceryl ricinoleate, glyceryl ricinoleate SE, ricinoleic acid, potassium ricinoleate, sodium ricinoleate, zinc ricinoleate, cetyl ricinoleate, ethyl ricinoleate, glycol ricinoleate, isopropyl ricinoleate, methyl ricinoleate, and octyldodecyl ricinoleate. Int J Toxicol 26(Suppl 3):31–77

    Google Scholar 

  • Khanal S, Tomlinson A, Pearce EI, Simmons PA (2007) Effect of an oil-in-water emulsion on the tear physiology of patients with mild to moderate dry eye. Cornea 26:175–181

    Article  PubMed  Google Scholar 

  • Lam L, Lam C, Cao Y (2004) Immunotoxins – a new class of anticancer drugs. Drugs Future 29:609–612

    Article  CAS  Google Scholar 

  • Lamb FI, Roberts L, Lord JM (1985) Nucleotide sequence of cloned cDNA coding for preproricin. Eur J Biochem 148:265–270

    Article  CAS  PubMed  Google Scholar 

  • Leshin J, Danielsen M, Credle JJ, Weeks A, O’Connell KP, Dretchen K (2010) Characterization of ricin toxin family members from Ricinus communis. Toxicon 55:658–661

    Article  CAS  PubMed  Google Scholar 

  • Lewis RJ Sr (1997) Hawley’s condensed chemical dictionary, 13th edn. Wiley, New York, pp 221–1200

    Google Scholar 

  • Lin J-Y, Liu K, Chen C-C, Tung T-C (1971) Effects of crystalline ricin on the biosynthesis of protein, RNA, and DNA in experimental tumors. Cancer Res 31:921–924

    CAS  PubMed  Google Scholar 

  • Longo DL, Duffey PL, Gribben JG, Jaffe ES, Curti BD, Gause BL, Janik JE, Braman VM, Esseltine D, Wilson WH, Kaufman D, Wittes RE, Nadler LM, Urba WJ (2000) Combination chemotherapy followed by an immunotoxin (anti-B4-blocked ricin) in patients with indolent lymphoma: results of a phase II study. Cancer J 6:146–150

    CAS  PubMed  Google Scholar 

  • Malathi B, Ramesh S, Rao KV, Reddy VD (2006) Agrobacterium-mediated genetic transformation and production of semilooper resistant transgenic castor (Ricinus communis L.). Euphytica 147:441–449

    Article  CAS  Google Scholar 

  • Martin JH, Leonard WH (1967) Principles of field crop production. Macmillan, New York

    Google Scholar 

  • McKeon TA, Chen GQ (2003) Transformation of Ricinus communis, the castor plant. US Patent No 6,620,986

    Google Scholar 

  • Meneghetti SMP, Meneghetti MR, Wold CR, Silva EC, Lima GES, de Silva LL, Serra TM, Cauduro F, de Oliveira LG (2006) Biodiesel from castor oil: a comparison of ethanolysis versus methanolysis. Energy Fuels 20:2262–2265

    Article  Google Scholar 

  • Merck Index (1989) Merck Index. In: Budavari S (ed) An encyclopedia of chemicals, drugs, and biologicals, 11th edn. Merck and Company, Rahway, NJ, p. 290, 1307

    Google Scholar 

  • Mohan Ram HY, Satsangi A (1963) Induction of cell divisions in the mature endosperm of Ricinus communis during germination. Curr Sci 32:28–30

    Google Scholar 

  • Morris JB (2004) Phytochemical traits in the genetic resources of castorbean. Curr Top Plant Biol 5:63–67

    CAS  Google Scholar 

  • Moser BR, Cermak SC, Isbell TA (2008) Evaluation of castor and lesquerella oil derivatives as additives in biodiesel and ultralow sulfur diesel fuels. Energy Fuels 22:1349–1352

    Article  CAS  Google Scholar 

  • Mosinger M (1951) Sur les réactions neuroendocriniennes et génitals dans l’intoxication par ricine. Cont Rend Soc Biol 145:412–415

    CAS  Google Scholar 

  • National Plant Germplasm System (2010) Germplasm resources information network. Department of Agriculture, Beltsville, MD

    Google Scholar 

  • Olsnes S, Pihl A (1973) Different biological properties of the two constituent peptide chains of ricin, a toxic protein inhibiting protein synthesis. Biochemistry 12:3121–3126

    Article  CAS  PubMed  Google Scholar 

  • Olsnes S, Pihl A (1981) Chimeric toxins. Pharmacol Ther 15:355–381

    Article  CAS  PubMed  Google Scholar 

  • Olsnes S, Sandvig K (1988) How protein toxins enter and kill cells. In: Frankel AE (ed) Immunotoxins. Kluwer, Boston, MA, pp 39–73

    Google Scholar 

  • Olsnes S, Saltvedt E, Pihl A (1974) Isolation and comparison of galactose-binding lectins from Abrus precatorius and Ricinus communis. J Biol Chem 249:803–810

    CAS  PubMed  Google Scholar 

  • Paris HS (1981) Pachytene variations in Ricinus. Genetica 55:209–215

    Article  Google Scholar 

  • Paris HS, Shifriss O, Jelenkovic G (1980) Nuclear organizing chromosomes of Ricinus. Theor Appl Genet 71:145–152

    Article  Google Scholar 

  • Pinkerton SD, Rolfe R, Auld DL, Ghetie V, Lauterbach BF (1999) Selection of castor for divergent concentrations of ricin and Ricinus communis agglutinin. Crop Sci 39:353–357

    CAS  Google Scholar 

  • Purseglove JW (1981) Tropical crops, dicotyledons. Longman, Essex, UK

    Google Scholar 

  • Ramos LC, Tango JS, Savi A, Leal NR (1984) Variability for oil and fatty acid composition in castor bean varieties. J Am Oil Chem Soc 61:1841–1843

    Article  CAS  Google Scholar 

  • Ready M, Wilson K, Piatak M, Robertus JD (1984) Ricin-like plant toxins are evolutionarily related to single-chain ribosome-inhibiting proteins from Phytolacca. J Biol Chem 259:15252–15256

    CAS  PubMed  Google Scholar 

  • Robert C, Robert AM, Robert L (2005) Effect of a preparation containing a fucose rich polysaccharide on periorbital wrinkles of human voluntaries. Skin Res Technol 11:47–52

    Article  CAS  PubMed  Google Scholar 

  • Roberts LM, Lamb FI, Pappin DJC, Lord JM (1985) The primary sequence of Ricinus communis agglutinin. J Biol Chem 260:15682–15686

    CAS  PubMed  Google Scholar 

  • Rojas-Barros P, de Haro A, Muñoz J, Fernández-Martínez JM (2004) Isolation of a natural mutant in castor with high oleic/low ricinoleic acid content in the oil. Crop Sci 44:76–80

    CAS  Google Scholar 

  • Sailaja M, Tarakeswari M, Sujatha M (2008) Stable genetic transformation of castor (Ricinus communis L.) via particle gun-mediated gene transfer using embryo axes from mature seeds. Plant Cell Rep 27:1509–1519

    Article  CAS  PubMed  Google Scholar 

  • Sandler ES, Homans A, Mandell L, Amylon M, Wall DA, Devidas M, Buchanan GR, Lipton JM, Billett AL (2006) Hematopoietic stem cell transplantation after first marrow relapse of non-T, non-B acute lymphoblastic leukemia: a pediatric oncology group pilot feasibility. J Pediatr Hematol Oncol 28:210–215

    Article  PubMed  Google Scholar 

  • Scadden DT, Schenkein DP, Bernstein Z, Luskey B, Doweiko J, Tulpule A, Levine AM (1998) Immunotoxin combined with chemotherapy for patients with AIDS-related non-Hodgkin’s lymphoma. Cancer 83:2580–2587

    Article  CAS  PubMed  Google Scholar 

  • Schaefer E, Peil H, Ambrosetti L, Petrini O (2003) Oedema protective properties of the red vine leaf extract AS 195 (Folia vitis viniferae) in the treatment of chronic venous insufficiency. A 6-week observational clinical trial. Arzneimittelforschung 53:243–246

    CAS  PubMed  Google Scholar 

  • Schnell R, Vitetta E, Schindler J, Borchmann P, Barth S, Gheti V, Hell K, Drillich S, Diehl V, Engert A (2000) Treatment of refractory Hodgkin’s lymphoma patients with an anti-CD25 ricin A-chain immunotoxin. Leukemia 14:129–135

    Article  CAS  PubMed  Google Scholar 

  • Schnell R, Borchmann P, Staak JO, Schindler J, Ghetie V, Vitetta ES, Engert A (2003) Clinical evaluation of ricin A-chain immunotoxins in patients with Hodgkin’s lymphoma. Ann Oncol 14:729–736

    Article  CAS  PubMed  Google Scholar 

  • Singh D (1976) Ricinus communis (Euphorbiaceae). In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 84–86

    Google Scholar 

  • Sujatha M, Reddy TP (1998) Differential cytokinin effects on the stimulation of in vitro shoot proliferation from meristematic explants of castor (Ricinus communis L.). Plant Cell Rep 17:561–566

    Article  CAS  Google Scholar 

  • Sujatha M, Sailaja M (2005) Stable genetic transformation of castor (Ricinus communis L.) via Agrobacterium tumefaciens-mediated gene transfer using embryo axes from mature seeds. Plant Cell Rep 23:803–810

    Article  CAS  PubMed  Google Scholar 

  • Thom E (2007) The effect of chlorogenic acid enriched coffee on glucose absorption in healthy volunteers and its effect on body mass when used long-term in overweight and obese people. J Int Med Res 35:900–908

    CAS  PubMed  Google Scholar 

  • Timko MP, Vasconcelos AC (1981) Euploidy in Ricinus: euploidy effects on photosynthetic activity and content of chlorophyll proteins. Plant Physiol 67:1084–1089

    Article  CAS  PubMed  Google Scholar 

  • TNO BIBRA International Ltd (1999) Toxicity profile. Castor oil. TNO BIBRA International, Surrey, UK

    Google Scholar 

  • Tregear JW, Roberts LM (1992) The lectin gene family of Ricinus communis: cloning of a functional ricin gene and three lectin pseudogenes. Plant Mol Biol 18:515–525

    Article  CAS  PubMed  Google Scholar 

  • Tyler VE, Brady LR, Robbers JE (1976) Pharmacognosy. Lea and Febiger, Philadelphia, PA

    Google Scholar 

  • UK Cropnet (2008) http://ukcrop.net/perl/ace/grep/EthnobotDB

  • Vanaja M, Jyothi M, Ratnakumar P, Vagheera P, Raghuram RP, Jyothi LN, Yadav SK, Maheshwari M, Venkateswarlu B (2008) Growth and yield responses of castor bean (Ricinus communis L.) to two enhanced CO2 levels. Plant Soil Environ 54:38–46

    CAS  Google Scholar 

  • Vietta ES, Uhr JW (1985) Immunotoxins: redirecting nature’s poisons. Cell 41:653–654

    Article  Google Scholar 

  • Vilhjalmsdottir L, Fisher H (1971) Castor bean meal as a protein source for chickens: detoxification and determination of limiting amino acids. J Nutr 101:1185–1192

    CAS  PubMed  Google Scholar 

  • Watanabe T, Arai Y, Mitsui Y, Kusaura T, Okawa W, Kajihara Y, Saito I (2006) The blood pressure-lowering effect and safety of chlorogenic acid from green coffee bean extract in essential hypertension. Clin Exp Hypertens 28:439–449

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Zheng X, Luo J, Gaut BS, Ge S (2007) Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. Mol Biol Evol 24:875–888

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Li Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morris, J.B., Wang, M.L., Morse, S.A. (2011). Ricinus. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14871-2_15

Download citation

Publish with us

Policies and ethics