Skip to main content

Haptics for Robot-Assisted Minimally Invasive Surgery

  • Conference paper
Robotics Research

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 66))

Abstract

Robot-assisted minimally invasive surgery (RMIS) holds great promise for improving the accuracy and dexterity of a surgeon while minimizing trauma to the patient. However, widespread clinical success with RMIS has been marginal and it is hypothesized by engineers and surgeons alike that the lack of haptic feedback presented to the surgeon is a limiting factor. The objective of our research is to acquire, display, and determine the utility of haptic information during RMIS. This overview paper examines the design, analysis, practicality, and effectiveness of various force estimation and display methods. In particular, we describe our experience in adding force feedback to an experimental version of the da Vinci surgical system, a commercially available teleoperated RMIS system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guthart, G., Salisbury, J.K.: The Intuitive Telesurgery System: Overview and application. In: IEEE Int. Conf. Rob. Aut., pp. 618–621 (2000)

    Google Scholar 

  2. Kitagawa, M., Bethea, B.T., Gott, V.L., Okamura, A.M.: Analysis of suture manipulation forces for teleoperation with force feedback. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 155–162. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Tang, L.W.: Robotically assisted video-enhanced endoscopic coronary artery bypass graft surgery. Angiology 52(2), 99–102 (2001)

    Article  Google Scholar 

  4. Xin, H., Zelek, J.S., Carnahan, H.: Laparoscopic surgery, perceptual limitations and force: A review. In: First Canadian Student Conference on Biomedical Computing, Kingston, Ontario, Canada, vol. 144 (2006)

    Google Scholar 

  5. Camarillo, D.B., Krummel, T.M., Salisbury, J.K.: Robotic technology in surgery: past, present, and future. Am. J. Surg. 188(4A), 2S–15S (2004)

    Article  Google Scholar 

  6. Mohr, F.W., Falk, V., Diegeler, A., Walther, T., Gummert, J.F., Bucerius, J., Jacobs, S., Autschbach, R.: Computer-enhanced “robotic” cardiac surgery: Experience in 148 patients. J. Thor. Cardio. Surg. 121(5), 842–853 (2001)

    Article  Google Scholar 

  7. Cavusoglu, M.C., Williams, W., Tendick, F., Sastry, S.S.: Robotics for telesurgery: Second generation berkeley/ucsf laparoscopic telesurgical workstation and looking towards the future applications. Ind. Rob. 30(1), 22–29 (2003)

    Article  Google Scholar 

  8. Okamura, A.M.: Methods for haptic feedback in teleoperated robot-assisted surgery. Ind. Rob. 31(6), 499–508 (2004)

    Article  Google Scholar 

  9. MacFarlane, M., Rosen, J., Hannaford, B., Pellegrini, C., Sinanan, M.: Force feedback grasper helps restore the sense of touch in minimally invasive surgery. Journal of Gastrointestinal Surgery 3(3), 278–285 (1999)

    Article  Google Scholar 

  10. Tholey, G., Desai, J.P., Castellanos, A.E.: Force feedback plays a significant role in minimally invasive surgery: results and analysis. Annals of Surgery 241, 102–109 (2005)

    Google Scholar 

  11. Deml, B., Ortmaier, T., Seibold, U.: The touch and feel in minimally invasive surgery. In: IEEE International Workshop on Haptic Audio Visual Environments and their Applications, pp. 33–38 (2005)

    Google Scholar 

  12. Ortmaier, T., Deml, B., Kuebler, B., Passig, G., Reintsema, D., Seibold, U.: Robot assisted force feedback surgery. In: Advances in Telerobotics. Springer Tracts in Advanced Robotics (STAR), pp. 341–358. Springer, Heidelberg (2007)

    Google Scholar 

  13. Wagner, C.R., Stylopoulos, N., Jackson, P.G., Howe, R.D.: The benefit of force feedback in surgery: Examination of blunt dissection. Presence: Teleoperators and Virtual Environments 16(3), 252–262 (2007)

    Article  Google Scholar 

  14. Rosen, J., Solazzo, M., Hannaford, B., Sinanan, M.: Objective evaluation of laparoscopic skills based on haptic information and tool/tissue interactions. Computer Aided Surgery 7(1), 49–61 (2002)

    Article  Google Scholar 

  15. Perreault, J.O., Cao, C.G.L.: Effects of vision and friction on haptic perception. Human Factors 48(3), 574–586 (2006)

    Article  Google Scholar 

  16. Hannaford, B.: A design framework for teleoperators with kinesthetic feedback. IEEE Transactions on Robotics and Automation 5(4), 426–434 (1989)

    Article  Google Scholar 

  17. Lawrence, D.A.: Stability and transparency in bilateral teleoperation. IEEE Transactions on Robotics and Automation 9(5), 624–637 (1993)

    Article  MathSciNet  Google Scholar 

  18. Cavusoglu, M.C., Sherman, A., Tendick, F.: Design of bilateral teleoperation controllers for haptic exploration and telemanipulation of soft environments. IEEE Transactions on Robotics and Automation 18(4), 641–647 (2002)

    Article  Google Scholar 

  19. Kuebler, B., Seibold, U., Hirzinger, G.: Development of actuated and sensor integrated forceps for minimally invasive robotic surgery. International Journal of Medical Robotics and Computer Assisted Surgery 1(3), 96–107 (2005)

    Article  Google Scholar 

  20. Dollar, A.M., Wagner, C.R., Howe, R.D.: Embedded sensors for biomimetic robotics via shape deposition manufacturing. In: 1st IEEE/RAS-EMBS Int. Conf. on Biomed. Rob. and Biomechatronics (BioRob), pp. 763–768 (2006)

    Google Scholar 

  21. Saha, S.: Appropriate degrees of freedom of force sensing in robot-assisted minimally invasive surgery. Master’s thesis, Dept. of Biomedical Eng., Johns Hopkins Univ. (2006)

    Google Scholar 

  22. Tavakoli, M., Patel, R.V., Moallem, M.: Haptic interaction in robot-assisted endoscopic surgery: A sensorized end effector. International Journal of Medical Robotics and Computer Assisted Surgery 1(2), 53–63 (2005)

    Article  Google Scholar 

  23. Zemiti, N., Morel, G., Ortmaier, T., Bonnet, N.: Mechatronic design of a new robot for force control in minimally invasive surgery. IEEE/ASME Transactions on Mechatronics 12(2), 143–153 (2007)

    Article  Google Scholar 

  24. Mahvash, M., Okamura, A.M.: Friction compensation for enhancing transparency of a teleoperator with compliant transmission. IEEE Transactions on Robotics 23(1), 1240–1246 (2007)

    Article  Google Scholar 

  25. Mahvash, M., Okamura, A.M.: Enhancing transparency of a position-exchange teleoperator. In: 2nd World Haptics, pp. 470–475 (2007)

    Google Scholar 

  26. Wagner, C.R., Howe, R.D.: Mechanisms of performance enhancement with force feedback. In: 1st World Haptics, pp. 21–29 (2005)

    Google Scholar 

  27. Semere, W., Kitagawa, M., Okamura, A.M.: Teleoperation with sensor/actuator asymmetry: Task performance with partial force feedback. In: 12th Symp. on Haptic Int. for Virt. Env. Teleoperator Sys., pp. 121–127 (2004)

    Google Scholar 

  28. Verner, L.N., Okamura, A.M.: Effects of translational and gripping force feedback are decoupled in a 4-degree-of-freedom telemanipulator. In: 2nd World Haptics, pp. 286–291 (2007)

    Google Scholar 

  29. Verner, L.N., Okamura, A.M.: Sensor/actuator asymmetries in telemanipulators: Implications of partial force feedback. In: 14th Symp. on Haptic Interfaces for Virtual Env. and Teleoperator Sys., pp. 309–314 (2006)

    Google Scholar 

  30. Prasad, S., Kitagawa, M., Fischer, G.S., Zand, J., Talamini, M.A., Taylor, R.H., Okamura, A.M.: A modular 2-dof force-sensing instrument for laparoscopic surgery. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 279–286. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  31. Kitagawa, M., Dokko, D., Okamura, A.M., Yuh, D.D.: Effect of sensory substitution on suture manipulation forces for robotic surgical systems. Journal of Thoracic and Cardiovascular Surgery 129(1), 151–158 (2005)

    Article  Google Scholar 

  32. Schoonmaker, R.E., Cao, C.G.L.: Vibrotactile feedback enhances force perception in minimally invasive surgery. In: Human Factors and Ergonomics Society 50th Annual Meeting, pp. 1029–1033 (2006)

    Google Scholar 

  33. Reiley, C.E., Akinbiyi, T., Burschka, D., Chang, D.C., Okamura, A.M., Yuh, D.D.: Effects of visual force feedback on robot-assisted surgical task performance. Journal of Thoracic and Cardiovascular Surgery 135(1), 196–202 (2008)

    Article  Google Scholar 

  34. Tavakoli, M., Aziminejad, A., Patel, R.V., Moallem, M.: Multi-sensory force/deformation cues for stiffness characterization in soft-tissue palpation. In: 28th Ann. Int. Conf. IEEE Eng. in Med. and Bio. Soc., pp. 837–840 (2006)

    Google Scholar 

  35. Abbott, J.J., Marayong, P., Okamura, A.M.: Haptic virtual fixtures for robot-assisted manipulation. In: Robotics Research. Springer Tracts in Advanced Robotics, pp. 49–64. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  36. De Gersem, G., Van Brussel, H., Tendick, F.: Reliable and enhanced stiffness perception in soft-tissue telemanipulation. International Journal of Robotics Research 24(10), 805–822 (2005)

    Article  Google Scholar 

  37. Miller, A.P., Hammoud, Z., Son, J.S., Peine, W.J.: Tactile imaging system for localizing lung nodules during video assisted thoracoscopic surgery. In: IEEE International Conference on Robotics and Automation, pp. 2996–3001 (2007)

    Google Scholar 

  38. Howe, R.D., Peine, W.J., Kontarinis, D.A., Son, J.S.: Remote palpation technology. IEEE Engineering in Medicine and Biology 14(3), 318–323 (1995)

    Article  Google Scholar 

  39. Abbott, J.J., Okamura, A.M.: Pseudo-admittance bilateral telemanipulation with guidance virtual fixtures. International Journal of Robotics Research 26(8), 865–884 (2007)

    Article  Google Scholar 

  40. Hashtrudi-Zaad, K., Salcudean, S.E.: Analysis of control architectures for teleoperation systems with impedance/admittance master and slave manipulators. International Journal of Robotics Research 20(6), 419–445 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Okamura, A.M., Verner, L.N., Reiley, C.E., Mahvash, M. (2010). Haptics for Robot-Assisted Minimally Invasive Surgery. In: Kaneko, M., Nakamura, Y. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14743-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14743-2_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14742-5

  • Online ISBN: 978-3-642-14743-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics