Skip to main content

Solar Physics

  • Chapter
  • First Online:
Cosmogenic Radionuclides

Part of the book series: Physics of Earth and Space Environments ((EARTH))

  • 1260 Accesses

Abstract

Cosmogenic 14C was first measured in the 1940s using the “low level decay counting” techniques outlined in Sect. 15.2, and was soon being used for “carbon dating” (Chap. 23). This was before Scott Forbush discovered the 11-year variation in the galactic cosmic radiation (Sect. 7.2), and it was assumed that the production rate of the cosmogenic radionuclides in the atmosphere was independent of time. In 1957 however, following Forbush’s discovery, Bernard Peters and Devendra Lal (1962) predicted that the 14C production rate would vary with time. In the same year Walter Elsasser, a “solid earth” geophysicist, and two cosmic ray physicists, Ed Ney and John Winckler, predicted that the 14C concentration would be affected by the changing strength of the geomagnetic field. Soon after, de Vries obtained experimental evidence that the 14C production rate had been higher in ~1700ad than in the nineteenth century. Several years later Hans Suess demonstrated that there had been several variations of the 14C production rate over time, and these became known as the “Suess wiggles” (Suess 1970).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu JA, Beer J, Steinhilber F, Tobias SM, Weiss NO (2008) For how long will the current grand maximum of solar activity persist? Geophys Res Lett 35:L20189

    Google Scholar 

  • Bard EG, Raisbeck M, Yiou F, Jouzel J (1997) Solar modulation of cosmogenic nuclide production over the last millennium: comparison between C-14 and Be-10 records. Earth and Planetary Science Letters 150(3-4):453-462

    Google Scholar 

  • Beer J, McCracken KG (2007) Evidence for solar forcing: some selected aspects. Paper presented at Climate and Weather of the Sun-Earth System (CAWSES), TERRAPUB, Tokyo, 2009, Kyoto

    Google Scholar 

  • Beer J, Tobias SM, Weiss NO (1998) An active Sun throughout the Maunder minimum. Solar Phys 181:237–249

    Article  ADS  Google Scholar 

  • Beer J, Mende W, Stellmacher R (2000) The role of the Sun in climate forcing. Quat Sci Rev 19(1–5):403–415

    Article  ADS  Google Scholar 

  • Beer J, McCracken KG, Abreu JA, Heikkilä U, Steinhilber F (2007) Long-term changes in cosmic rays derived from cosmogenic radionuclides. Paper presented at 30th International Cosmic Ray Conference ICRC07, Merida

    Google Scholar 

  • Caballero-Lopez RA, Moraal H, McCracken KG, McDonald FB (2004) The heliospheric magnetic field from 850 to 2000 AD inferred from/sup 10/Be records. J Geophys Res 109:A12102

    Article  Google Scholar 

  • Castagnoli G, Lal D (1980) Solar modulation effects in terrestrial production of C-14. Radiocarbon 22(2):133–158

    Google Scholar 

  • Damon PE, Jirikowic JL (1992) The Sun as a low-frequency harmonic oscillator. Radiocarbon 34:199–205

    Google Scholar 

  • Damon PE, Sonett CP (1991) Solar and terrestrial components of the atmopsheric 14C variation spectrum. In: Sonett CP, Giampapa MS, Matthews MS (eds) The Sun in Time. University of Arizona press, Tucson, pp 360–388

    Google Scholar 

  • Eddy JA (1976) The Maunder minimum. Science 192(4245):1189–1201

    Article  ADS  Google Scholar 

  • Gleeson LJ, Axford WI (1968) Solar modulation of galactic cosmic rays. Astrophys J 154:1011–1026

    Article  ADS  Google Scholar 

  • Gray LJ et al (2010) Solar influences on climate. Rev Geophys 48(4):RG4001

    Article  ADS  Google Scholar 

  • Grosjean M, Suter PJ, Trachsel M, Wanner H (2007) Ice-borne prehistoric finds in the Swiss Alps reflect Holocene glacier fluctuations. J Quat Sci 22(3):203–207

    Article  Google Scholar 

  • Holzhauser H, Magny M, Zumbuhl HJ (2005) Glacier and lake-level variations in west-central Europe over the last 3500 years. Holocene 15(6):789–801

    Article  Google Scholar 

  • IPCC (2007) Fourth Assessment on Climate Change – The Physical Science BasisRep

    Google Scholar 

  • Lal D, Peters B (1962) Cosmic ray produced isotopes and their application to problems in geophysics. In: Wilson JG, Wouthuysen SA (eds) Progress in elementary particle and cosmic ray physics. North-Holland publishing company, Amsterdam

    Google Scholar 

  • Lockwood M, Stamper R, Wild MN (1999) A doubling of the Sun’s coronal magnetic field during the past 100 years. Nature 399(6735):437–439

    Article  ADS  Google Scholar 

  • McCracken KG (2007) Heliomagnetic field near Earth, 1428–2005. J Geophys Res-Part A-Space Phys 112:A09106, 09101-09109

    Article  Google Scholar 

  • McCracken KG, McDonald FB, Beer J, Raisbeck G, Yiou F (2004) A phenomenological study of the long-term cosmic ray modulation, 850–1958 AD. J Geophys Res-Space Phys 109:A12103

    Article  ADS  Google Scholar 

  • McCracken KG, Beer J, McDonald FB (2005) The long-term variability of the cosmic radiation intensity at Earth as recorded by the cosmogenic nuclides. In: Geiss J, Hultqvist B (eds) The solar system and beyond, ten years of ISSI. ESA Publication, The Netherlands, pp 83–98

    Google Scholar 

  • McDonald FB, Webber WR, Reames DV (2010) Unusual time histories of galactic and anomalous cosmic rays at 1 AU over the deep solar minimum of cycle 23/24. Geophys Res Lett 37:L18101

    Google Scholar 

  • Meehl GA, Arblaster JM, Matthes K, Sassi F, van Loon H (2009) Amplifying the Pacific climate system response to a small 11-year solar cycle forcing. Science 325(5944):1114–1118

    Article  ADS  Google Scholar 

  • Muscheler R, Beer J, Wagner G, Laj C, Kissel C, Raisbeck GM, Yiou F, Kubik PW (2004) Changes in the carbon cycle during the last deglaciation as indicated by the comparison of Be-10 and C-14 records. Earth Planet Sci Lett 219(3–4):325–340

    Article  ADS  Google Scholar 

  • Peristykh AN, Damon PE (2003) Persistence of the Gleissberg 88-year solar cycle over the last 12,000 years: evidence from cosmogenic isotopes. J Geophys Res-Space Phys 108(A1), art. no.-1003

    Google Scholar 

  • Reimer PJ et al (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–1058

    Google Scholar 

  • Schrijver CJ, DeRosa ML, Title AM (2002) What is missing from our understanding of long-term solar and heliospheric activity? Astrophys J 577(2):1006–1012

    Article  ADS  Google Scholar 

  • Smart DF, Shea MA, McCracken KG (2006) The Carrington event: possible solar proton intensity-time profile. Adv Space Res 38(2):215–225

    Article  ADS  Google Scholar 

  • Solanki SK, Schussler M, Fligge M (2002) Secular variation of the Sun’s magnetic flux. Astron Astrophys 383(2):706–712

    Article  ADS  Google Scholar 

  • Solanki SK, Usoskin IG, Kromer B, Schussler M, Beer J (2004) Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431(7012):1084–1087

    Article  ADS  Google Scholar 

  • Steinhilber F, Abreu JA, Beer J (2008) Solar modulation during the Holocene. Astrophys Space Sci Trans 4:1–6

    Article  ADS  Google Scholar 

  • Steinhilber F, Beer J, Frohlich C (2009) Total solar irradiance during the Holocene. Geophys Res Lett 36:L19704

    Article  ADS  Google Scholar 

  • Steinhilber F, Abreu JA, Beer J, McCracken KG (2010) Interplanetary magnetic field during the past 9300 years inferred from cosmogenic radionuclides. J Geophys Res-Space Phys 115:A01104

    Article  Google Scholar 

  • Stuiver M, Braziunas TF (1993) Sun, ocean, climate and atmospheric 14CO2, an evaluation of causal and spectral relationships. Holocene 3:289–305

    Article  Google Scholar 

  • Stuiver M, Braziunas TF, Becker B, Kromer B (1991) Climatic, solar, oceanic, and geomagnetic influences on late-glacial and Holocene atmospheric C-14/C-12 change. Quat Res 35(1):1–24

    Article  Google Scholar 

  • Suess HE (1970) The three causes of the secular C14 fluctuations, their amplitudes and time constants. In: Olsson IU (ed) Radiocarbon variations and absolute chronology. Almquist and Willsell, Stockholm, pp 595–605

    Google Scholar 

  • Svalgaard L, Cliver EW (2005) The IDV index: its derivation and use in inferring long-term variations of the interplanetary magnetic field strength. J Geophys Res-Space Phys 110: A12103

    Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 79(1):61–78

    Google Scholar 

  • Usoskin I, Mursula K, Kovaltsov G (2001) Heliospheric modulation of cosmic rays and solar activity during the Maunder minimum. J Geophys Res Space Phys 106(A8):16039–16046

    Article  ADS  Google Scholar 

  • Vonmoos M, Beer J, Muscheler R (2006) Large variations in Holocene solar activity: constraints from Be-10 in the Greenland Ice Core Project ice core. J Geophys Res-Space Phys 111: A10105

    Google Scholar 

  • Wang YM, Sheeley NR, Lean J (2002a) Meridional flow and the solar cycle variation of the Sun’s open magnetic flux. Astrophys J 580(2):1188–1196

    Article  ADS  Google Scholar 

  • Wang YM, Lean J, Sheeley NR (2002b) Role of a variable meridional flow in the secular evolution of the Sun’s polar fields and open flux. Astrophys J 577(1):L53–L57

    Article  ADS  Google Scholar 

  • Wanner H et al (2008) Mid- to late Holocene climate change: an overview. Quat Sci Rev 27(19–20):1791–1828

    Article  ADS  Google Scholar 

  • Webber WR, Higbie PR (2010) What Voyager cosmic ray data in the outer heliosphere tells us about Be-10 production in the Earth’s polar atmosphere in the recent past. J Geophys Res-Space Phys 15:05102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürg Beer .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beer, J., McCracken, K., von Steiger, R. (2012). Solar Physics. In: Cosmogenic Radionuclides. Physics of Earth and Space Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14651-0_17

Download citation

Publish with us

Policies and ethics