Skip to main content

Abstract

The wakefulness (W) phase of the SWC in humans usually happens during the day. Only during W are we aware of ourselves and our environment; that is, only during W do we feel, think, and work in full knowledge of what we do and fully use our senses and faculties. During W is when we properly process all the information that reaches the thalamus and the cerebral cortex from the sensory organs and from the propioceptors and intraceptors distributed in our organism. W is therefore necessary for our nervous system to support the organization of cognitive processes in their different categories. The state of W primes the nervous system to perform these functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott A (2005) Neuroscience: while you were sleeping. Nature 437:1220–1222

    PubMed  CAS  Google Scholar 

  • Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–424

    PubMed  CAS  Google Scholar 

  • Adler CH (2005) Nonmotor complications in Parkinson’s disease. Mov Disord 20:S23–S29

    PubMed  Google Scholar 

  • Alonso A (1998) Intrinsic electroresponsiviness of basal forebrain cholinergic and non cholinergic neurons. In: Lydic R, Baghdoyan HA (eds) Handbook of behavioural state control. Cellular and molecular mechanisms. CRC Press, Boca Raton, London, New York, pp 297–309

    Google Scholar 

  • Asanuma C (1992) Noradrenergic innervation of the thalamic reticular nucleus: a light and electron microscopic immunohistochemical study in rats. J Comp Neurol 319:299–311

    PubMed  CAS  Google Scholar 

  • Asanuma C (1997) Distribution of neuromodulatory inputs in the reticular and dorsal thalamic nuclei. In: Steriade M, Jones EG, McCormick DA (eds) Thalamus, experimental and clinical aspects, vol II. Elsevier, Amsterdam, pp 93–153

    Google Scholar 

  • Aston-Jones G, Bloom FE (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1:876–886

    PubMed  CAS  Google Scholar 

  • Aston-Jones G, Chiang C, Alexinsky T (1991) Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. Prog Brain Res 88:501–520

    PubMed  CAS  Google Scholar 

  • Azmitia EC, Segal M (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179:641–667

    PubMed  CAS  Google Scholar 

  • Baghdoyan HA, Rodrigo-Angulo ML, McCarley RW, Hobson JA (1984) Site-specific enhancement and suppression of desynchronized sleep signs following cholinergic stimulation of three brainstem regions. Brain Res 306:39–52

    PubMed  CAS  Google Scholar 

  • Barthó P, Freund TF, Acsády L (2002) Selective GABAergic innervation of thalamic nuclei from zona incerta. Eur J Neurosci 16:999–1014

    PubMed  Google Scholar 

  • Batini C, Moruzzi G, Palestini M, Rossi GF, Zanchetti A (1959) Effects of complete pontine transections on the sleep-wakefulness rithms: the midpontine pretrigeminal preparation. Arch Ital Biol 97:1–12

    Google Scholar 

  • Bayer L, Eggermann E, Saint-Mleux B, Machard D, Jones BE, Mühlethaler M, Serafin M (200a) Selective action of orexin (hypocretin) on nonspecific thalamocortical projection neurons. J Neurosci 22:7835–7839

    PubMed  CAS  Google Scholar 

  • Bayer L, Mairet-Coello G, Risold PY, Griffond B (200b) Orexin/hypocretin neurons: chemical phenotype and possible interactions with melanin-concentrating hormone neurons. Regul Pept 104:33–39

    PubMed  CAS  Google Scholar 

  • Beaulieu C, Somogyi P (1991) Enrichment of cholinergic synaptic terminals on GABAergic neurons and coexistence of immunoreactive GABA and choline acetyltransferase in the same synaptic terminals in the striate cortex of the cat. J Comp Neurol 304:666–680

    PubMed  CAS  Google Scholar 

  • Ben-Ari Y, Kanazawa I, Kelly JS (1976) Exclusively inhibitory action of iontophoretic acetylcholine on single neurones of feline thalamus. Nature 259:327–330

    PubMed  CAS  Google Scholar 

  • Berger B, Gaspar P (1994) Phylogeny and development of catecholamine systems in the CNS of vertebrates. Cambridge University Press, Cambridge (UK)

    Google Scholar 

  • Berger B, Gaspar P, Verney C (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci 14:21–27

    PubMed  CAS  Google Scholar 

  • Berridge CW, Foote SL (1991) Effects of locus coeruleus activation on electroencephalographic activity in neocortex and hippocampus. J Neurosci 11:3135–3145

    PubMed  CAS  Google Scholar 

  • Bickford ME, Günlük AE, Guido W, Sherman SM (1993) Evidence that cholinergic axons from the parabrachial region of the brainstem are the exclusive source of nitric oxide in the lateral geniculate nucleus of the cat. J Comp Neurol 334:410–430

    PubMed  CAS  Google Scholar 

  • Bickford ME, Ramcharan E, Godwin DW, Erişir A, Gnadt J, Sherman SM (2000) Neurotransmitters contained in the subcortical extraretinal inputs to the monkey lateral geniculate nucleus. J Comp Neurol 424:701–717

    PubMed  CAS  Google Scholar 

  • Bourgin P, Huitrón-Résendiz S, Spier AD, Fabre V, Morte B, Criado JR, Sutcliffe JG, Henriksen SJ, de Lecea L (2000) Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons. J Neurosci 20:7760–7765

    PubMed  CAS  Google Scholar 

  • Bremer F (193b) L’activité cérébrale au cours du sommeil et de la narcose. Contribution à l’étude du mécanisme du sommeil. Bull Acad roy Méd Belg 4:68–86

    Google Scholar 

  • Brown RE, Sergeeva OA, Eriksson KS, Haas HL (200a) Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine, and noradrenaline). J Neurosci 22:8850–8859

    PubMed  CAS  Google Scholar 

  • Brown RE, McKenna JT, Winston S, Basheer R, Yanagawa Y, Thakkar MM, McCarley RW (200b) Characterization of GABAergic neurons in rapid-eye-movement sleep controlling regions of the brainstem reticular formation in GAD67-green fluorescent protein knock-in mice. Eur J Neurosci 27:352–363

    PubMed  Google Scholar 

  • Brown RE, Winston S, Basheer R, Thakkar MM, McCarley RW (2006) Electrophysiological characterization of neurons in the dorsolateral pontine rapid-eye-movement sleep induction zone of the rat: intrinsic membrane properties and responses to carbachol and orexins. Neuroscience 143:739–755

    PubMed  CAS  Google Scholar 

  • Burlet S, Tyler CJ, Leonard CS (2002) Direct and indirect excitation of laterodorsal tegmental neurons by Hypocretin/Orexin peptides: implications for wakefulness and narcolepsy. J Neurosci 22:2862–2872

    PubMed  CAS  Google Scholar 

  • Camacho-Evangelista A, Reinoso-Suárez F (1964) Activating and synchronizing centers in cat brain: electroencephalograms after lesions. Science 146:268–270

    PubMed  CAS  Google Scholar 

  • Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, Fitch TE, Nakazato M, Hammer RE, Saper CB, Yanagisawa M (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98:437–451

    PubMed  CAS  Google Scholar 

  • Chou TC, Bjorkum AA, Gaus SE, Lu J, Scammell TE, Saper CB (2002) Afferents to the ventrolateral preoptic nucleus. J Neurosci 22:977–990

    PubMed  CAS  Google Scholar 

  • Ciliax BJ, Drash GW, Staley JK, Haber S, Mobley CJ, Miller GW, Mufson EJ, Mash DC, Levey AI (1999) Immunocytochemical localization of the dopamine transporter in human brain. J Comp Neurol 409:38–56

    PubMed  CAS  Google Scholar 

  • Cirelli C, Pompeiano M, Tononi G (1996) Neural gene expression in the waking state: a role for the locus coeruleus. Science 274:1211–1215

    PubMed  CAS  Google Scholar 

  • Clascá F, Llamas A, Reinoso-Suárez F (1989) Hypothalamic connections of the insular cortex in the cat. Brain Res 490:361–366

    PubMed  Google Scholar 

  • Clements JR, Grant S (1990) Glutamate-like immunoreactivity in neurons of the laterodorsal tegmental and pedunculopontine nuclei in the rat. Neurosci Lett 120:70–73

    PubMed  CAS  Google Scholar 

  • Coull JT, Frith CD, Dolan RHJ, Frackowiack RSJ, Grasby PM (1997) The neural correlates of the noradrenergic modulation of human attention, arousal and learning. Eur J Neurosci 9:589–598

    PubMed  CAS  Google Scholar 

  • Cox C, Sherman SM (1999) Glutamate inhibits thalamic reticular neurons. J Neurosci 19:6694–6699

    PubMed  CAS  Google Scholar 

  • Curró-Dossi R, Paré D, Steriade M (1991) Short-lasting nicotinic and long-lasting muscarinic depolarizing responses of thalamocortical neurons to stimulation of mesopontine cholinergic nuclei. J Neurophysiol 65:393–406

    PubMed  Google Scholar 

  • Dahan L, Astier B, Vautrelle N, Urbain N, Kocsis B, Chouvet G (2007) Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacology 32:1232–1241

    PubMed  CAS  Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existence of monoamines-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies lf the brain stem neurons. Acta Physiol Scand [Suppl] 62:1–55

    Google Scholar 

  • Davidson RA, Fedio P, Smith BD, Aureille E, Martin A (1992) Lateralized mediation of arousal and habituation: differential bilateral electrodermal activity in unilateral temporal lobectomy patients. Neuropsychologia 30:1053–1063

    PubMed  CAS  Google Scholar 

  • De la Roza C, Martinez-Mena J, Sanchez-Valle ME, Reinoso-Suarez F (2004) Projections from the cat posterior lateral hypothalamus to the ventral part of the oral pontine reticular nucleus contain a GABAergic component. Brain Res 1020:118–129

    Google Scholar 

  • de Lecea L, Sutcliffe JG (2005) The hypocretins and sleep. FEBS J 272:5675–5688

    PubMed  Google Scholar 

  • de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 95:322–327

    PubMed  Google Scholar 

  • De Lima AD, Singer W (1987) The brainstem projection to the lateral geniculate nucleus in the cat: identification of cholinergic and monoaminergic elements. J Comp Neurol 259:92–121

    PubMed  Google Scholar 

  • De Lima AD, Montero VM, Singer W (1985) The cholinergic innervation of the visual thalamus: an EM immunocytochemical study. Exp Brain Res 59:206–212

    PubMed  Google Scholar 

  • Détári L, Semba K, Rasmusson DD (1997) Responses of cortical EEG-related basal forebrain neurons to brainstem and sensory stimulation in urethane-anaesthetized rats. Eur J Neurosci 9:1153–1161

    PubMed  Google Scholar 

  • Devilbiss DM, Waterhouse BD (2004) The effects of tonic locus ceruleus output on sensory-evoked responses of ventral posterior medial thalamic and barrel field cortical neurons in the awake rat. J Neurosci 24:10773–10785

    PubMed  CAS  Google Scholar 

  • Devilbiss DM, Page ME, Waterhouse BD (2006) Locus ceruleus regulates sensory encoding by neurons and networks in waking animals. J Neurosci 26:9860–9872

    PubMed  CAS  Google Scholar 

  • Dringenberg HC, Kuo MC (2003) Histaminergic facilitation of electrocorticographic activation: role of basal forebrain, thalamus, and neocortex. Eur J Neurosci 18:2285–2291

    PubMed  Google Scholar 

  • Dzirasa K, Ribeiro S, Costa R, Santos LM, Lin SC, Grosmark A, Sotnikova TD, Gainetdinov RR, Caron MG, Nicolelis MA (2006) Dopaminergic control of sleep–wake states. J Neurosci 26:10577–10589

    PubMed  CAS  Google Scholar 

  • Eggermann E, Serafin M, Bayer L, Machard D, Saint-Mleux B, Jones BE, Mühlethaler M (2001) Orexins/hypocretins excite basal forebrain cholinergic neurons. Neuroscience 108:177–181

    PubMed  CAS  Google Scholar 

  • Eisensehr I, Noachtar S, von Schlippenbach C, Uttner I, Kleine J, Seelos K, Helmchen C (2003) Hypersomnia associated with bilateral posterior hypothalamic lesion. A polysomnographic case study. Eur Neurol 49:169–172

    PubMed  CAS  Google Scholar 

  • el Mansari M, Sakai K, Jouvet M (1989) Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep-waking cycle in freely moving cats. Exp Brain Res 76:519–529

    PubMed  Google Scholar 

  • España RA, Baldo BA, Kelley AE, Berridge CW (2001) Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action. Neuroscience 106:699–715

    PubMed  Google Scholar 

  • Findlay AL, Hayward JN (1969) Spontaneous activity of single neurones in the hypothalamus of rabbits during sleep and waking. J Physiol 201:237–258

    PubMed  CAS  Google Scholar 

  • Fisher RS, Buchwald NA, Hull CD, Levine MS (1988) GABAergic basal forebrain neurons project to the neocortex: the localization of glutamic acid decarboxylase and choline acetyltransferase in feline corticopetal neurons. J Comp Neurol 272:489–502

    PubMed  CAS  Google Scholar 

  • Fitzpatrick D, Diamond IT, Raczkowski D (1989) Cholinergic and monoaminergic innervation of the cat’s thalamus: comparison of the lateral geniculate nucleus with other principal sensory nuclei. J Comp Neurol 288:647–675

    PubMed  CAS  Google Scholar 

  • Foote SL, Morrison JH (1987) Extrathalamic modulation of cortical function. Ann Rev Neurosci 10:41–66

    Google Scholar 

  • Fournier GN, Materi LM, Semba K, Rasmusson DD (2004) Cortical acetylcholine release and electroencephalogram activation evoked by ionotropic glutamate receptor agonists in the rat basal forebrain. Neuroscience 123:785–792

    PubMed  CAS  Google Scholar 

  • Gallopin T, Fort P, Eggermann E, Cauli B, Luppi PH, Rossier J, Audinat E, Mühlethaler M, Serafin M (2000) Identification of sleep-promoting neurons in vitro. Nature 404:992–995

    PubMed  CAS  Google Scholar 

  • García-Cabezas MA, Rico B, Sánchez-González MA, Cavada C (200a) Distribution of the dopamine innervation in the macaque and human thalamus. Neuroimage 34:965–984

    PubMed  Google Scholar 

  • García-Cabezas MA, Martinez-Sanchez P, Sánchez-González MA, Garzón M, Cavada C (200b) Dopamine innervation in the thalamus: monkey versus rat. Cereb Cortex 19:424–434

    PubMed  Google Scholar 

  • Garduño-Torres B, Treviño M, Gutiérrez R, Arias-Montaño JA (2007) Pre-synaptic histamine H3 receptors regulate glutamate, but not GABA release in rat thalamus. Neuropharmacology 52:527–535

    PubMed  Google Scholar 

  • Garzón M (1996) Estudio morfofuncional de los núcleos reticular oral y reticular caudal del tegmento pontino como regiones generadoras de sueño paradójico. Tesis Doctoral, Universidad Autónoma de Madrid

    Google Scholar 

  • Gervasoni D, Darracq L, Fort P, Soulière F, Chouvet G, Luppi PH (1998) Electrophysiological evidence that noradrenergic neurons of the rat locus coeruleus are tonically inhibited by GABA during sleep. Eur J Neurosci 10:964–970

    PubMed  CAS  Google Scholar 

  • Gervasoni D, Peyron Ch, Rampon C, Barbagli B, Chouvet G, Urbain N, Fort P, Luppi PH (2000) Role and origin of the GABAergic innervation of dorsal raphe. Serotonergic neurons. J Neurosci 20:4217–4225

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS, Brown RM (1982) Postnatal development of monoamine content and synthesis in the cerebral cortex of rhesus monkeys. Brain Res 256:339–349

    PubMed  CAS  Google Scholar 

  • Govindaiah G, Cox CL (2006) Modulation of thalamic neuron excitability by orexins. Neuropharmacology 51:414–425

    PubMed  CAS  Google Scholar 

  • Graybiel AM, Berson DM (1980) Histochemical identification and afferent connections of subdivisions in the lateralis posterior-pulvinar complex and related thalamic nuclei in the cat. Neuroscience 5:1175–1238

    PubMed  CAS  Google Scholar 

  • Gritti I, Mainville L, Mancia M, Jones BE (1997) GABAergic and other non-cholinergic basal forebrain neurons project together with cholinergic neurons to meso- and iso-cortex in the rat. J Comp Neurol 383:163–177

    PubMed  CAS  Google Scholar 

  • Haas H, Panula P (2003) The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev 4:121–130

    CAS  Google Scholar 

  • Hallanger AE, Levey AI, Lee HJ, Rye DB, Wainer BH (1987) The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J Comp Neurol 262:105–124

    PubMed  CAS  Google Scholar 

  • Harting JK, Van Lieshout DP, Hashikawa T, Weber JT (1991) The parabigeminogeniculate projection: connectional studies in eight mammals. J Comp Neurol 305:559–581

    PubMed  CAS  Google Scholar 

  • Heckers S, Geula C, Mesulam MM (1992) Cholinergic innervation of the human thalamus: dual origin and differential nuclear distribution. J Comp Neurol 325:68–82

    PubMed  CAS  Google Scholar 

  • Henny P, Jones BE (2008) Projections from basal forebrain to prefrontal cortex comprise cholinergic, GABAergic and glutamatergic inputs to pyramidal cells or interneurons. Eur J Neurosci 27:654–670

    PubMed  Google Scholar 

  • Huang ZL, Qu WM, Li WD, Mochizuki T, Eguchi N, Watanabe T, Urade Y, Hayaishi O (200a) Arousal effect of orexin A depends on activation of the histaminergic system. Proc Natl Acad Sci USA 98:9965–9970

    PubMed  CAS  Google Scholar 

  • Huang H, Ghosh P, van den Pol AN (200b) Prefrontal cortex-projecting glutamatergic thalamic paraventricular nucleus-excited by hypocretin: a feedforward circuit that may enhance cognitive arousal. J Neurophysiol 95:1656–1668

    PubMed  Google Scholar 

  • Inagaki N, Yamatodani A, Ando-Yamamoto M, Tohyama M, Watanabe T, Wada H (1988) Organization of histaminergic fibers in rat brain. J Comp Neurol 273:283–300

    PubMed  CAS  Google Scholar 

  • Jacobs BL, Wilkinson LO, Fornal CA (1990) The role of brain serotonin. A neurophysiologic perspective. Neuropsychopharmacology 3:473–479

    PubMed  CAS  Google Scholar 

  • Jiménez-Castellanos J, Reinoso-Suárez F (1985) Topographical organization of the afferent connections of the principal ventro-medial thalamic nucleus in the cat. J Comp Neurol 236:297–314

    PubMed  Google Scholar 

  • Jin CY, Panula P (2005) The laminar histamine receptor system in human prefrontal cortex suggests multiple levels of histaminergic regulation. Neuroscience 132:137–149

    PubMed  CAS  Google Scholar 

  • Jin CY, Kalimo H, Panula P (2002) The histaminergic system in human thalamus: correlation of innervation to receptor expression. Eur J Neurosci 15:1125–1138

    PubMed  CAS  Google Scholar 

  • Jones BE (1991) Paradoxical sleep and its chemical/structural substrates in the brain. Neuroscience 40:637–656

    PubMed  CAS  Google Scholar 

  • Jones EG (2007) The thalamus. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Jones BE (2008) Modulation of cortical activation and behavioral arousal by cholinergic and orexinergic systems. Ann NY Acad Sci 1129:26–34

    PubMed  CAS  Google Scholar 

  • Jones BE, Beaudet A (1987) Retrograde labeling of neurones in the brain stem following injections of [3H]choline into the forebrain of the rat. Exp Brain Res 65:437–448

    PubMed  CAS  Google Scholar 

  • Jones B, Bobillier P, Jouvet M (1969) Effects de la destruction des neurones contenant des catecolamines du mesencephale sur le cycle veille-sommeil du chat. C R Soc Biol (Paris) 163:176–180

    CAS  Google Scholar 

  • Karczmar AG, Longo VG, Scotti deCarolis A (1970) A pharmacological model of paradoxical sleep: the role of cholinergic and monoamine systems. Physiol Behav 5:175–182

    PubMed  CAS  Google Scholar 

  • Kayama Y, Koyama Y (2003) Control of sleep and wakefulness by brainstem monoaminergic and cholinergic neurons. Acta Neurochir Suppl 87:3–6

    PubMed  CAS  Google Scholar 

  • Kayama Y, Ohta M, Jodo E (1992) Firing of ‘possibly’ cholinergic neurons in the rat laterodorsal tegmental nucleus during sleep and wakefulness. Brain Res 569:210–220

    PubMed  CAS  Google Scholar 

  • Keifer JC, Baghdoyan HA, Lydic R (1996) Pontine cholinergic mechanisms modulate the cortical electroencephalographic spindles of halothane anesthesia. Anesthesiology 84:945–954

    PubMed  CAS  Google Scholar 

  • Khateb A, Fort P, Pegna A, Jones BE, Miihlethaler M (1995) Cholinergic nucleus basalis neurons are excited by histamine in vitro. Neuroscience 69:495–506

    PubMed  CAS  Google Scholar 

  • Kievit J, Kuypers HG (1975a) Basal forebrain and hypothalamic connection to frontal and parietal cortex in the Rhesus monkey. Science 187:660–662

    PubMed  CAS  Google Scholar 

  • Kievit J, Kuypers HG (1975b) Subcortical afferents to the frontal lobe in the rhesus monkey studied by means of retrograde horseradish peroxidase transport. Brain Res 85:261–266

    PubMed  CAS  Google Scholar 

  • Kinomura S, Larsson J, Gulyas B, Roland PE (1996) Activation by attention of the human reticular formation and thalamic ntralaminar nuclei. Science 271:512–515

    PubMed  CAS  Google Scholar 

  • Koyama Y, Kayama Y (1993) Mutual interactions among cholinergic, noradrenergic and serotonergic neurons studied by ionophoresis of these transmitters in rat brainstem nuclei. Neuroscience 55:1117–1126

    PubMed  CAS  Google Scholar 

  • Koyama Y, Takahashi K, Kodama T, Kayama Y (2003) State-dependent activity of neurons in the perifornical hypothalamic area during sleep and waking. Neuroscience 119:1209–1219

    PubMed  CAS  Google Scholar 

  • Kruglikov I, Rudy B (2008) Perisomatic GABA release and thalamocortical integration onto neocortical excitatory cells are regulated by neuromodulators. Neuron 58:911–924

    PubMed  CAS  Google Scholar 

  • Kumar S, Szymusiak R, Bashir T, Suntsova N, Rai S, McGinty D, Alam MN (2008) Inactivation of median preoptic nucleus causes c-Fos expression in hypocretin- and serotonin-containing neurons in anesthetized rat. Brain Res 1234:66–77

    PubMed  CAS  Google Scholar 

  • Kuo MC, Dringenberg HC (2008) Histamine facilitates in vivo thalamocortical long-term potentiation in the mature visual cortex of anesthetized rats. Eur J Neurosci 27:1731–1738

    PubMed  Google Scholar 

  • Lambe E, Aghajanian G (2003) Hypocretin (orexin) induces calcium transients in single spines postsynaptic to identified thalamocortical boutons in prefrontal slice. Neuron 40:139–150

    PubMed  CAS  Google Scholar 

  • Lambe EK, Olausson P, Horst NK, Taylor JR, Aghajanian GK (2005) Hypocretin and nicotine excite the same thalamocortical synapses in prefrontal cortex: correlation with improved attention in rat. J Neurosci 25:5225–5229

    PubMed  CAS  Google Scholar 

  • Lambe EK, Liu RJ, Aghajanian GK (2007) Schizophrenia, hypocretin (orexin), and the thalamocortical activating system. Schizophr Bull 33:1284–1290

    PubMed  Google Scholar 

  • Lavoie B, Parent A (1994) Pedunculopontine nucleus in the squirrel monkey: distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons. J Comp Neurol 344:190–209

    PubMed  CAS  Google Scholar 

  • Lee KH, McCormick DA (1995) Acetylcholine excites GABAergic neurons of the ferret perigeniculate nucleus through nicotinic receptors. J Neurophysiol 73:2123–2128

    PubMed  CAS  Google Scholar 

  • Lee RS, Steffensen SC, Henriksen SJ (2001) Discharge profiles of ventral tegmental area GABA neurons during movement, anesthesia, and the sleep-wake cycle. J Neurosci 21:1757–1766

    PubMed  CAS  Google Scholar 

  • Lee KH, Broberger C, Kim U, McCormick DA (2004) Histamine modulates thalamocortical activity by activating a chloride conductance in ferret perigeniculate neurons. Proc Natl Acad Sci USA 101:6716–6721

    PubMed  CAS  Google Scholar 

  • Lee MG, Hassani OK, Jones BE (2005a) Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 25:6716–6720

    PubMed  CAS  Google Scholar 

  • Lee MG, Hassani OK, Alonso A, Jones BE (2005b) Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep. J Neurosci 25:4365–4369

    PubMed  CAS  Google Scholar 

  • Leonard CS, Llinás R (1994) Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling REM sleep: an in vitro electrophysiological study. Neuroscience 59:309–330

    PubMed  CAS  Google Scholar 

  • Levey AI, Hallanger AE, Wainer BH (1987) Choline acetyltransferase immunoreactivity in the rat thalamus. J Comp Neurol 257:317–332

    PubMed  CAS  Google Scholar 

  • Lewis DA, Melchitzky DS, Sesack SR, Whitehead RE, Auh S, Sampson A (2001) Dopamine transporter immunoreactivity in monkey cerebral cortex: regional, laminar, and ultrastructural localization. J Comp Neurol 432:119–136

    PubMed  CAS  Google Scholar 

  • Lin JS (1994) The brain histaminergic system and arousal mechanisms. Snews Alert:11

    Google Scholar 

  • Lin JS (2000) Brain structures and mechanisms involved in the control of cortical activation and wakefulness, with emphasis on the posterior hypothalamus and histaminergic neurons. Sleep Med Rev 4:471–503

    PubMed  CAS  Google Scholar 

  • Lin JS, Sakai K, Jouvet M (1986) Role of hypothalamic histaminergic systems in the regulation of the states of vigilance in the cat. CR Acad Sci 303:469–474

    CAS  Google Scholar 

  • Lin JS, Sakai K, Jouvet M (1988) Evidence for histaminergic arousal mechanisms in the hypothalamus of cats. Neuropharmacology 27:111–122

    PubMed  CAS  Google Scholar 

  • Lin JS, Sakai K, Vanni-Mercier G, Jouvet M (1989) A critical role of the posterior hypothalamus in the mechanisms of wakefulness determined by microinjection of muscimol in freely moving cats. Brain Res 479(2):225–240

    PubMed  CAS  Google Scholar 

  • Lin JS, Kitahama K, Fort P, Panula P, Denney RM, Jouvet M (1993) Histaminergic system in the posterior hypothalamus in the cat with reference to type B monoamine oxidase. J Comp Neurol 330:405–420

    PubMed  CAS  Google Scholar 

  • Lin JS, Hou Y, Sakai K, Jouvet M (1996) Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat. J Neurosci 16:1523–1537

    PubMed  CAS  Google Scholar 

  • Lindsley DB, Schreiner LH, Knowles WB, Magoun HW (1950) Behavioral and EEG changes following chronic brain stem lesions in the cat. Electroencephalogr Clin Neurophysiol 2:483–498

    PubMed  CAS  Google Scholar 

  • Llamas A, Reinoso-Suárez F (1969) Projections of the substantia nigra and ventral tegmental mesencephalic area. In: Gilligham FG (ed) Third symposium on Parkinson’s disease. E. & S. Livingstone, London, pp 82–97

    Google Scholar 

  • Llamas A, Reinoso-Suárez F, Martínez-Moreno E (1975) Projections to the gyrus proreus from the brain stem tegmentum (locus coeruleus, raphe nuclei) in the cat, demonstrated by retrorade transport of horseradish peroxidase. Brain Res 89:331–336

    PubMed  CAS  Google Scholar 

  • Losier BJ, Semba K (1993) Dual projections of single cholinergic and aminergic brainstem neurons to the thalamus and basal forebrain in the rat. Brain Res 604:41–52

    PubMed  CAS  Google Scholar 

  • Lu J, Bjorkum AA, Xu M, Gaus SE, Shiromani PJ, Saper CB (2002) Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep. J Neurosci 22:4568–4576

    PubMed  CAS  Google Scholar 

  • Lu J, Jhou TC, Saper CB (2006) Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J Neurosci 26:193–202

    PubMed  CAS  Google Scholar 

  • Luebke JI, Greene RW, Semba K, Kamondi A, McCarley RW, Reiner PB (1992) Serotonin hyperpolarizes cholinergic low-threshold burst neurons in the rat laterodorsal tegmental nucleus in vitro. Proc Natl Acad Sci USA 89:743–747

    PubMed  CAS  Google Scholar 

  • Luppi P-H, Peyron C, Rampon C, Gervasont D, Barbagli B, Boisard B, Fort P (1998) Inhibitory mechanisms in dorsal raphe nucleus and locus coeruleus during sleep. In: Lydic R, Baghdoyan HA (eds) Handbook of behavioural state control. Cellular and molecular mechanisms. CRC Press, Boca Raton, London, New York, pp 195–211

    Google Scholar 

  • Maloney KJ, Mainville L, Jones B (1999) Differential c-Fos expression in cholinergic, monoaminergic, and GABAergic cell groups of the pontomesencephalic tegmentum after paradoxical sleep deprivation and recovery. J Neurosci 15:3057–3072

    Google Scholar 

  • Manns ID, Alonso A, Jones BE (2000) Discharge profiles of juxtacellularly labeled and immunohistochemically identified GABAergic basal forebrain neurons recorded in association with the electroencephalogram in anesthetized rats. J Neurosci 20:9252–9263

    PubMed  CAS  Google Scholar 

  • Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M, Elmquist JK (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 435:6–25

    PubMed  CAS  Google Scholar 

  • Marrocco RT, Witte EA, Davidson MC (1994) Arousal systems. Curr Opin Neurobiol 4:166–170

    PubMed  CAS  Google Scholar 

  • Masri R, Trageser JC, Bezdudnaya T, Li Y, Keller A (2006) Cholinergic regulation of the posterior medial thalamic nucleus. J Neurophysiol 96:2265–2273

    PubMed  CAS  Google Scholar 

  • McCormick DA (1992) Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol 39:337–388

    PubMed  CAS  Google Scholar 

  • McCormick DA, Bal T (1994) Sensory gating mechanisms of the thalamus. Curr Opin Neurobiol 4:550–556

    PubMed  CAS  Google Scholar 

  • McCormick DA, Bal T (1997) Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 20:185–215

    PubMed  CAS  Google Scholar 

  • McCormick DA, Pape HC (1988) Acetylcholine inhibits identified interneurons in the cat lateral geniculate nucleus. Nature 334:246–248

    PubMed  CAS  Google Scholar 

  • McCormick DA, Williamson A (1991) Modulation of neuronal firing mode in cat and guinea pig LGNd by histamine: possible cellular mechanisms of histaminergic control of arousal. J Neurosci 11:3188–3199

    PubMed  CAS  Google Scholar 

  • McCormick DA, Wang Z, Huguenard J (1993) Neurotransmitter control of neocortical neuronal activity and excitability. Cereb Cortex 3:387–398

    PubMed  CAS  Google Scholar 

  • McGinty DJ, Harper RM (1976) Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res 101:569–575

    PubMed  CAS  Google Scholar 

  • Mesulam MM (1995) Cholinergic pathways and the ascending reticular activating system of the human brain. Ann NY Acad Sci 757:169–179

    PubMed  CAS  Google Scholar 

  • Mesulam MM, Geula C (1988) Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J Comp Neurol 275:216–240

    PubMed  CAS  Google Scholar 

  • Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46:787–798

    PubMed  CAS  Google Scholar 

  • Miller JD, Farber J, Gatz P, Roffwarg H, German DC (1983) Activity of mesencephalic dopamine and non-dopamine neurons across stages of sleep and walking in the rat. Brain Res 273:133–141

    PubMed  CAS  Google Scholar 

  • Monti JM, Monti D (2007) The involvement of dopamine in the modulation of sleep and waking. Sleep Med Rev 11:113–133

    PubMed  Google Scholar 

  • Monti JM, Jantos H, Boussard M, Altier H, Orellana C, Olivera S (1991) Effects of selective activation or blockade of the histamine H, receptor on sleep and wakefulness. Eur J Pharmacol 205:283–287

    PubMed  CAS  Google Scholar 

  • Moore RY, Bloom FE (1979) Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems. Annu Rev Neurosci 2:113–168

    PubMed  CAS  Google Scholar 

  • Moore RY, Abrahamson EA, Van Den Pol A (2001) The hypocretin neuron system: an arousal system in the human brain. Arch Ital Biol 139:195–205

    PubMed  CAS  Google Scholar 

  • Moreno-Balandrán E, Garzón M, Bódalo C, Reinoso-Suárez F, De Andrés I (2008) Sleep-wakefulness effects after microinjections of hypocretin 1 (orexin A) in cholinoceptive areas of the cat oral pontine tegmentum. Eur J Neurosci 28:331–341

    PubMed  Google Scholar 

  • Morrison JH, Foote SL (1986) Noradrenergic and serotoninergic innervation of cortical, thalamic, and tectal visual structures in Old and New World monkeys. J Comp Neurol 243:117–138

    PubMed  CAS  Google Scholar 

  • Moruzzi G (1972) The sleep-waking cycle. Ergeb Physiol 64:1–165

    PubMed  CAS  Google Scholar 

  • Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroenceph Clin Neurophysiol 1:455–473

    PubMed  CAS  Google Scholar 

  • Murillo-Rodriguez E, Liu M, Blanco-Centurion C, Shiromani PJ (2008) Effects of hypocretin (orexin) neuronal loss on sleep and extracellular adenosine levels in the rat basal forebrain. Eur J Neurosci 28:1191–1198

    PubMed  Google Scholar 

  • Nauta WJH (1946) Hypothalamic regulation of sleep in rats. An experimental study. J Neurophysiol 9:285–316

    PubMed  CAS  Google Scholar 

  • Nelson JP, McCarley RW, Hobson JA (1983) REM sleep burst neurons, PGO waves, and eye movement information. J Neurophysiol 50:784–797

    PubMed  CAS  Google Scholar 

  • Nicholson AN (1983) Antihistamines and sedation. Lancet 2:211–212

    PubMed  CAS  Google Scholar 

  • Nicolelis MA, Fanselow EE (2002) Thalamocortical [correction of Thalamcortical] optimization of tactile processing according to behavioral state. Nat Neurosci 5:517–523. Erratum in: Nat Neurosci 5:704

    Google Scholar 

  • Nicolelis MA, Chapin JK, Lin RC (1992) Somatotopic maps within the zona incerta relay parallel GABAergic somatosensory pathways to the neocortex, superior colliculus, and brainstem. Brain Res 577:134–141

    PubMed  CAS  Google Scholar 

  • Nitz D, Siegel JM (1997) GABA release in the locus coeruleus as a function of sleep/wake state. Neuroscience 78:795–801

    PubMed  CAS  Google Scholar 

  • Nuñez A, Buño W, Reinoso-Suárez F (1998) Neurotransmitter actions on oral pontine tegmental neurons of the rat: an in vitro study. Brain Res 804:144–148

    PubMed  Google Scholar 

  • Nuñez A, Moreno-Balandrán ME, Rodrigo-Angulo ML, Garzón M, de Andrés I (2006) Relationship between the perifornical hypothalamic area and the oral pontine reticular nucleus in the rat. Possible implication of the hypocretinergic projection in the control of rapid eye movement sleep. Eur J Neurosci 24:2834–2842

    PubMed  Google Scholar 

  • Nuñez A, Rodrigo-Angulo ML, Andrés ID, Garzón M (2009) Hypocretin/Orexin neuropeptides: participation in the control of sleep-wakefulness cycle and energy homeostasis. Curr Neuropharmacol 7:50–59

    PubMed  Google Scholar 

  • Ojima H (1994) Terminal morphology and distribution of corticothalamic fibers originating from layers 5 and 6 of cat primary auditory cortex. Cereb Cortex 4:646–663

    PubMed  CAS  Google Scholar 

  • Onoé H, Yamatodani A, Watanabe Y, Mochizuki T, Wada H, Hayashi O (1992) Prostaglandin E2 and histamine in the posterior hypothalamus. J Sleep Res l(Suppl 1):166

    Google Scholar 

  • Otake K, Ruggiero DA (1995) Monoamines and nitric oxide are employed by afferents engaged in midline thalamic regulation. J Neurosci 15:1891–1911

    PubMed  CAS  Google Scholar 

  • Panula P, Pirvola U, Auvinen S, Airaksinen MS (1989) Histamineimmunoreactive nerve fibers in the rat brain. Neuroscience 28:585–610

    PubMed  CAS  Google Scholar 

  • Pape HC, McCormick DA (1995) Electrophysiological and pharmacological properties of interneurons in the cat dorsal lateral geniculate nucleus. Neuroscience 68:1105–1125

    PubMed  CAS  Google Scholar 

  • Parmentier R, Ohtsu H, Djebbara-Hannas Z, Valatx JL, Watanabe T, Lin JS (2002) Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep–wake control. J Neurosci 22:7695–7711

    PubMed  CAS  Google Scholar 

  • Pasquier DA, Reinoso-Suárez F (1976) Direct projections from hypothalamus to hippocampus in the rat demonstrated by retrograde transport of horseradish peroxidase. Brain Res 108:165–169

    PubMed  CAS  Google Scholar 

  • Pasquier DA, Reinoso-Suárez F (1977) Differential efferent connections of the brain stem to the hippocampus in the cat. Brain Res 120:540–548

    PubMed  CAS  Google Scholar 

  • Pasquier DA, Reinoso-Suárez F (1978) The topographic organization of hypothalamic and brain stem projections to the hippocampus. Brain Res Bull 3:373–389

    PubMed  CAS  Google Scholar 

  • Patel NC, Carden WB, Bickford ME (1999) Synaptic targets of cholinergic terminals in the cat lateral posterior nucleus. J Comp Neurol 410:31–41

    PubMed  CAS  Google Scholar 

  • Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015

    PubMed  CAS  Google Scholar 

  • Peyron C, Faraco J, Rogers W, Ripley B, Overeem S, Charnay Y, Nevsimalova S, Aldrich M, Reynolds D, Albin R, Li R, Hungs M, Pedrazzoli M, Padigaru M, Kucherlapati M, Fan J, Maki R, Lammers GJ, Bouras C, Kucherlapati R, Nishino S, Mignot E (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 9:991–997

    Google Scholar 

  • Rasmusson DD, Szerb IC, Jordan JL (1996) Differential effects of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and N-methyl-D-aspartate receptor antagonists applied to the basal forebrain on cortical acetylcholine release and electroencephalogram desynchronization. Neuroscience 72:419–427

    PubMed  CAS  Google Scholar 

  • Reiner PB, Kamondi A (1994) Mechanisms of antihistamine-induced sedation in the human brain: H, receptor activation reduces a background leakage potassium current. Neuroscience 59:579–588

    PubMed  CAS  Google Scholar 

  • Reinoso-Suárez F (1961) Topographischer Hirnatlas der Katze fur Experimental-Physiologische Untersuchungen. Merck AG, Darmstad

    Google Scholar 

  • Reinoso-Suárez F (1971) Centros reguladores de la vigilia y el sueño. Rev Esp Oto-Neuro-Oftalm 29:111–119

    Google Scholar 

  • Reinoso-Suárez F (1977) Proyecciones a neocortex e hipocampo desde el tronco del encéfalo e hipotálamo. An Anat Nº Extraord:1–9

    Google Scholar 

  • Reinoso-Suárez F (1984) Connectional patterns in parieto-temporo-occipital association cortex of the feline cerebral cortex. In: Reinoso-Suárez F, Ajmone Marsan C (eds) Cortical integration: basic, archicortical and cortical association levels of neural integration, vol 11, IBRO monograph series. Raven Press, New York, pp 255–278

    Google Scholar 

  • Reinoso-Suárez F (1985) Morfología del sistema neuroendocrino. In: Schiaffini O, Fernández-Tresguerrres JA (eds) Neuroendocrinología. Salvat Editores, Barcelona, pp 1–46

    Google Scholar 

  • Reinoso-Suárez F (1997) Neurobiología del despertar y la vigilia. An R Acad Nac Med (Madr) 114:249–265

    Google Scholar 

  • Reinoso-Suárez F (2005) Neurobiología del sueño. Rev Med Univ Navarra 49:8–17

    Google Scholar 

  • Reinoso-Suárez F, De Andrés I (1976) Brain structures and sleep. Trab Inst Cajal Invest Biol 68:39–68

    PubMed  Google Scholar 

  • Reinoso-Suárez F, Llamas A (1975) Conexiones aferentes a la corteza frontal desde tegmento ponto-mesencefálico (locus coeruleus, rafe, sustancia negra) en la rata. An Anat 24:337–350

    Google Scholar 

  • Reinoso-Suárez F, Llamas A, Avendaño C (1982) Pallido-cortical projections in the cat studied by means of the horseradish peroxidase retrograde transport technique. Neurosci Lett 29:225–229

    PubMed  Google Scholar 

  • Reinoso-Suárez F, Rodrigo-Angulo ML, Rodríguez-Veiga E, De Andrés I (1990) Thalamic connections of oral pontine tegmentum sites whose cholinergic stimulation produces enhacement of paradoxical sleep signs. In: Mancia M, Marini G (eds) The diencephalon and sleep. Raven Press, New York, pp 49–63

    Google Scholar 

  • Reinoso-Suárez F, De Andrés I, Rodrigo-Angulo ML, Rodríguez-Veiga E (1994) Location and anatomical connections of a paradoxical sleep induction site in the cat ventral pontine tegmentum. Eur J Neurosci 6:1829–1836

    PubMed  Google Scholar 

  • Reinoso-Suárez F, De Andrés I, Rodrigo-Angulo ML, Garzón M (2001) Brain structures and mechanisms involved in the generation of REM sleep. Sleep Med Rev 5:63–78

    PubMed  Google Scholar 

  • Richardson RT, DeLong MR (1990) Context-dependent responses of primate nucleus basalis neurons in a go/no-go task. J Neurosci 10:2528–2540

    PubMed  CAS  Google Scholar 

  • Rico B, Cavada C (1998) Adrenergic innervation of the monkey thalamus: an immunohistochemical study. Neuroscience 84:839–847

    PubMed  CAS  Google Scholar 

  • Rodrigo-Angulo ML, Reinoso-Suárez F (1982) Topographical organization of the brainstem afferents to the lateral posterior-pulvinar thalamic complex in the cat. Neuroscience 7:1495–1508

    PubMed  CAS  Google Scholar 

  • Rodrigo-Angulo ML, Reinoso-Suárez F (1995) Afferent connections of the lateralis medialis thalamic nucleus in the cat. Brain Res Bull 38:53–67

    PubMed  CAS  Google Scholar 

  • Rodrigo-Angulo ML, Rodríguez-Veiga E, Reinoso-Suárez F (2000) Serotonergic connections to the ventral oral pontine tegmentum. Implication in paradoxical sleep modulation. J Comp Neurol 418:93–105

    PubMed  CAS  Google Scholar 

  • Rodrigo-Angulo ML, Rodríguez-Veiga E, Reinoso-Suárez F (2005) A quantitative study of the brainstem cholinergic projections to the ventral part of the oral pontine reticular nucleus (REM sleep induction site) in the cat. Exp Brain Res 160:334–343

    PubMed  Google Scholar 

  • Rodrigo-Angulo ML, Heredero S, Rodríguez-Veiga E, Reinoso-Suárez F (2008) GABAergic and non-GABAergic thalamic, hypothalamic and basal forebrain projections to the ventral oral pontine reticular nucleus: their implication in REM sleep modulation. Brain Res 1210:116–125

    PubMed  CAS  Google Scholar 

  • Rubio-Garrido P, Pérez-de-Manzo F, Porrero C, Galazo MJ, Clascá F (2009) Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. Cereb Cortex 19:2380–2395

    PubMed  Google Scholar 

  • Sakai K (1991) Physiological properties and afferent connections of the locus coeruleus and adjacent tegmental neurons involved in the generation of paradoxical sleep in the cat. Prog Brain Res 88:31–45

    PubMed  CAS  Google Scholar 

  • Sakurai T (2007) The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 8:171–181

    PubMed  CAS  Google Scholar 

  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexins receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585

    PubMed  CAS  Google Scholar 

  • Sakurai T, Nagata R, Yamanaka A, Kawamura H, Tsujino N, Muraki Y, Kageyama H, Kunita S, Takahashi S, Goto K, Koyama Y, Shioda S, Yanagisawa M (2005) Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron 46:297–308

    PubMed  CAS  Google Scholar 

  • Sallmen T, Beckman AL, Stanton TL, Eriksson KS, Tarhanen J, Tuomisto L, Panula P (1999) Major changes in the brain histamine system of the ground squirrel Citellus lateralis during hibernation. J Neurosci 19:1824–1835

    PubMed  CAS  Google Scholar 

  • Sánchez-González MA, García-Cabezas MA, Rico B, Cavada C (2005) The primate thalamus is a key target for brain dopamine. J Neurosci 25:6076–6083

    PubMed  Google Scholar 

  • Saper CB, Scammell TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437:1257–1263

    PubMed  CAS  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1994) The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J Neurophysiol 71:515–528

    PubMed  CAS  Google Scholar 

  • Schiff ND (2008) Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Ann NY Acad Sci 1129:105–118

    PubMed  Google Scholar 

  • Schwartz JC, Arrang JM, Garbarg M, Pollard H, Ruat M (1991) Histaminergic transmission in the mammalian brain. Physiol Rev 71:1–51

    PubMed  CAS  Google Scholar 

  • Semba K (1993) Aminergic and cholinergic afferents to REM sleep induction regions of the pontine reticular formation in the rat. J Comp Neurol 330:543–556

    PubMed  CAS  Google Scholar 

  • Semba K (1999) The mesopontine cholinergic system: a dual role in REM sleep and wakefulness. In: Lydic R, Baghdoyan HA (eds) Handbook of behavioural state control. Cellular and molecular mechanisms. CRC Press, Boca Raton, London, New York, pp 161–180

    Google Scholar 

  • Sherin JE, Elmquist JK, Torrealba F, Saper CB (1998) Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in theventrolateral preoptic nucleus of the rat. J Neurosci 18:4705–4721

    PubMed  CAS  Google Scholar 

  • Sherman SM (2001) Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci 24:122–136

    PubMed  CAS  Google Scholar 

  • Shirvalkar P, Seth M, Schiff ND, Herrera DG (2006) Cognitive enhancement with central thalamic electrical stimulation. Proc Natl Acad Sci USA 103:17007–17012

    PubMed  CAS  Google Scholar 

  • Siegel JM, Tomaszewski KS, Nienhuis R (1986) Behavioral states in the chronic medullary and midpontine cat. Electroencephalogr Clin Neurophysiol 63:274–288

    PubMed  CAS  Google Scholar 

  • Sillito AM, Jones HE, Gerstein GL, West DC (1994) Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature 369:479–482

    PubMed  CAS  Google Scholar 

  • Sofroniew MV, Priestley JV, Consolazione A, Eckenstein F, Cuello AC (1985) Cholinergic projections from the midbrain and pons to the thalamus in the rat, identified by combined retrograde tracing and choline acetyltransferase immunohistochemistry. Brain Res 329:213–223

    PubMed  CAS  Google Scholar 

  • Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206–221

    PubMed  CAS  Google Scholar 

  • Steininger TL, Alam MN, Gong H, Szymusiak R, McGinty D (1999) Sleep-waking discharge of neurons in the posterior lateral hypothalamus of the albino rat. Brain Res 840:138–147

    PubMed  CAS  Google Scholar 

  • Steriade M (1981) Mechanisms underliyng cortical activation: neuronal organization and propierties of the midbrain reticular core and intralaminar thalamic nuclei. In: Pompeiano O, Ajmone-Marsan C (eds) Brain mechanisms of perceptual awareness and purposeful behavior, vol 8, IBRO monogragh series. Raven Press, New York, pp 327–377

    Google Scholar 

  • Steriade M (2004) Acetylcholine systems and rhythmic activities during the waking-sleep cycle. Prog Brain Res 145:179–196

    PubMed  CAS  Google Scholar 

  • Steriade M, Domigh L, Oakson G, Deschenes M (1987a) The deafferented reticular thalamic nucleus generates spindle ritmicity. J Neurophysiol 57:260–273

    PubMed  CAS  Google Scholar 

  • Steriade M, Parent A, Pare D, Smith Y (1987b) Cholinergic and non-cholinergic neurons of cat basal forebrain project to reticular and mediodorsal thalamic nuclei. Brain Res 408:372–376

    PubMed  CAS  Google Scholar 

  • Steriade M, Paré D, Parent A, Smith Y (1988) Projections of cholinergic and non-cholinergic neurons of the brainstem core to relay and associational thalamic nuclei in the cat and macaque monkey. Neuroscience 25:47–67

    PubMed  CAS  Google Scholar 

  • Steriade M, Paré D, Datta S, Oakson G, Curró Dossi R (1990) Different cellular types in mesopontine cholinergic nuclei related to ponto-geniculo-occipital waves. J Neurosci 10:2560–2579

    PubMed  CAS  Google Scholar 

  • Steriade M, Curró Dossi R, Núñez A (1991) Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression. J Neurosci 11:3200–3217

    PubMed  CAS  Google Scholar 

  • Steriade M, Curro-Dossi R, Contreras D (1993) Electrophysiological properties of intralaminar thalamocortical cells discharging rhythmic (approximately 40HZ) spike-bursts at approximately 1000HZ during waking and rapid eye movement sleep. Neuroscience 56:1–9

    PubMed  CAS  Google Scholar 

  • Sutcliffe JG, de Lecea L (2002) The hypocretins: setting the arousal threshold. Nat Rev Neurosci 3:339–349

    PubMed  CAS  Google Scholar 

  • Sutin EL, Jacobowitz DM (1988) Immunocytochemical localization of peptides and other neurochemicals in the rat laterodorsal tegmental nucleus and adjacent area. J Comp Neurol 270:243–270

    PubMed  CAS  Google Scholar 

  • Szymusiak R, McGinty D (1989) Effects of basal forebrain stimulation on the waking discharge of neurons in the midbrain reticular formation of cats. Brain Res 498:355–359

    PubMed  CAS  Google Scholar 

  • Takahashi K, Lin JS, Sakai K (2006) Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J Neurosci 26:10292–10298

    PubMed  CAS  Google Scholar 

  • Tao R, Ma Z, McKenna JT, Thakkar MM, Winston S, Strecker RE, McCarley RW (2006) Differential effect of orexins (hypocretins) on serotonin release in the dorsal and median raphe nuclei of freely behaving rats. Neuroscience 141:1101–1105

    PubMed  CAS  Google Scholar 

  • Tashiro M, Sakurada Y, Mochizuki H, Horikawa E, Maruyama M, Okamura N, Watanuki S, Arai H, Itoh M, Yanai K (2008) Effects of a sedative antihistamine, D-chlorpheniramine, on regional cerebral perfusion and performance during simulated car driving. Hum Psychopharmacol 23:139–150

    PubMed  CAS  Google Scholar 

  • Thakkar MM, Strecker RE, McCarley RW (1998) Behavioral state control through differential serotonergic inhibition in the mesopontine cholinergic nuclei: a simultaneous unit recording and microdialysis study. J Neurosci 18:5490–5497

    PubMed  CAS  Google Scholar 

  • Thakkar MM, Ramesh V, Strecker RE, McCarley RW (2001) Microdialysis perfusion of orexin-A in the basal forebrain increases wakefulness in freely behaving rats. Arch Ital Biol 139:313–328

    PubMed  CAS  Google Scholar 

  • Torterolo P, Sampogna S, Morales FR, Chase MH (2006) MCH-containing neurons in the hypothalamus of the cat: searching for a role in the control of sleep and wakefulness. Brain Res 1119:101–114

    PubMed  CAS  Google Scholar 

  • Tsujino N, Yamanaka A, Ichiki K, Muraki Y, Kilduff TS, Yagami K, Takahashi S, Goto K, Sakurai T (2005) Cholecystokinin activates orexin/hypocretin neurons through the cholecystokinin A receptor. J Neurosci 25:7459–7469

    PubMed  CAS  Google Scholar 

  • van den Pol AN, Acuna-Goycolea C, Clark KR, Ghosh PK (2004) Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection. Neuron 42:635–652

    PubMed  Google Scholar 

  • Vanni-Mercier G, Sakai K, Jouvet M (1984) Specific neurons for wakefulness in the posterior hypothalamus in the cat. CR Acad Sci III 298:195–200

    CAS  Google Scholar 

  • Velayos JL, Reinoso-Suárez F (1982) Topographic organization of the brainstem afferents to the medio-dorsal thalamic nucleus. J Comp Neurol 206:12–28

    Google Scholar 

  • Velayos JL, Reinoso-Suárez F (1985) Prosencephalic afferents to the mediodorsal thalamic nucleus. J Comp Neurol 242:161–181

    PubMed  CAS  Google Scholar 

  • Verret L, Goutagny R, Fort P, Cagnon L, Salvert D, Léger L, Boissard R, Salin P, Peyron C, Luppi PH (2003) A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci 4:19

    PubMed  Google Scholar 

  • Villablanca JR (2004) Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system. J Sleep Res 13:179–208

    PubMed  Google Scholar 

  • Vincent SR, Hope BT (1992) Neurons that say NO. Trends Neurosci 15:108–113

    PubMed  CAS  Google Scholar 

  • von Economo C (1926) Die Pathologie des Schlafes. In: von Bethe A, von Bergman G, Embden G, Ellinger A (eds) Handbuch des normalen und pathologischen Physiologie. Springer, Berlin, pp 591–610

    Google Scholar 

  • von Economo C (1930) Sleep as a problem of localization. J Nerv Ment Dis 71:249–259

    Google Scholar 

  • Wada H, Inagaki N, Yamatodani A, Watanabe T (1991) Is the histaminergic neuron system a regulatory center for whole-brain activity? Trends Neurosci 14:415–418

    PubMed  CAS  Google Scholar 

  • Wang QP, Koyama Y, Guan JL, Takahashi K, Kayama Y, Shioda S (2005) The orexinergic synaptic innervation of serotonin- and orexin 1-receptor-containing neurons in the dorsal raphe nucleus. Regul Pept 126:35–42

    PubMed  CAS  Google Scholar 

  • Westlund KN, Sorkin LS, Ferrington DG, Carlton SM, Willcockson HH, Willis WD (1990) Serotoninergic and noradrenergic projections to the ventral posterolateral nucleus of the monkey thalamus. J Comp Neurol 295:197–207

    PubMed  CAS  Google Scholar 

  • Williams SM, Goldman-Rakic PS (1993) Characterization of the dopaminergic innervation of the primate frontal cortex using a dopamine-specific antibody. Cereb Cortex 3:199–222

    PubMed  CAS  Google Scholar 

  • Williams JA, Reiner PB (1993) Noradrenaline hyperpolarizes identified rat mesopontine cholinergic neurons in vitro. J Neurosci 13:3878–3883

    PubMed  CAS  Google Scholar 

  • Wilson FAW, Rolls ET (1990) Neuronal responses related to novelty and familiarity of visual stimuli in the substantia innominata, diagonal band of Broca and periventricular region of the primate basal forebrain. Exp Brain Res 80:104–120

    PubMed  CAS  Google Scholar 

  • Wilson JR, Manning KA, Forestner DM, Counts SE, Uhlrich DJ (1999) Comparison of cholinergic and histaminergic axons in the lateral geniculate complex of the macaque monkey. Anat Rec 255:295–305

    PubMed  CAS  Google Scholar 

  • Xi MC, Morales FR, Chase MH (2001) Effects on sleep and wakefulness of the injection of hypocretin-1 (orexin-A) into the laterodorsal tegmental nucleus of the cat. Brain Res 901:259–264

    PubMed  CAS  Google Scholar 

  • Yamanaka A, Tsujino N, Funahashi H, Honda K, Guan JL, Wang QP, Tominaga M, Goto K, Shioda S, Sakurai T (2002) Orexins activate histaminergic neurons via the orexin 2 receptor. Biochem Biophys Res Commun 290:1237–1245

    PubMed  CAS  Google Scholar 

  • Yamanaka A, Muraki Y, Ichiki K, Tsujino N, Kilduff TS, Goto K, Sakurai T (2006) Orexin neurons are directly and indirectly regulated by catecholamines in a complex manner. J Neurophysiol 96:284–298

    PubMed  CAS  Google Scholar 

  • Yoshida K, McCormack S, España RA, Crocker A, Scammell TE (2006) Afferents to the orexin neurons of the rat brain. J Comp Neurol 494:845–861

    PubMed  Google Scholar 

  • Zeitzer JM, Buckmaster CL, Parker KJ, Hauck CM, Lyons DM, Mignot E (2003) Circadian and homeostatic regulation of hypocretin in a primate model: implications for the consolidation of wakefulness. J Neurosci 23:3555–3560

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Reinoso-Suárez M.D., Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reinoso-Suárez, F., de Andrés, I., Garzón, M. (2011). Functional Anatomy of Wakefulness. In: Functional Anatomy of the Sleep-Wakefulness Cycle: Wakefulness. Advances in Anatomy, Embryology and Cell Biology, vol 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14626-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14626-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14625-1

  • Online ISBN: 978-3-642-14626-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics