Skip to main content

Coupled Channels Methods

  • Chapter
  • First Online:
Theory of Particle and Cluster Emission

Part of the book series: Lecture Notes in Physics ((LNP,volume 819))

Abstract

The most general procedure to describe the emission of deformed fragments within a phenomenological approach is the coupled channels method. We analyze various methods to integrate the coupled channels system of differential equations describing emission processes, namely (a) numerical integration, (b) diagonalisation method, (c) analytical continuation method, (d) distorted wave approach and (e) two potential method. These methods are general, not depending upon the concrete structure of the emitted fragments. We then discuss the intrinsic system of coordinate, adiabatic approach, emission from triaxial nuclei, the coupling with rotation and vibration of the heavy fragment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fröman, P.P.: Alpha decay from deformed nuclei. Mat. Fys. Skr. Dan. Vid. Selsk. 1(3) (1957)

    Google Scholar 

  2. Gyarmati, B., Vertse, T.: On the normalisation of Gamow functions. Nucl. Phys. A 160, 523–528 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  3. Vertse, T., Pál, K.F., Balogh, A.: GAMOW, a program for calculating the resonant state solution of the Radial Schrödinger Equation in an arbitrary optical potential. Comput. Phys. Commun. 27, 309–322 (1982)

    Article  ADS  Google Scholar 

  4. Ixaru, L., Rizea, M., Vertse, T.: Piecewiese perturbation methods for calculating Eigensolutions of complex optical potential. Comput. Phys. Commun. 85, 217–230 (1995)

    Article  ADS  MATH  Google Scholar 

  5. Ferreira, L.S., Maglione, E., Liotta, R.J.: Nucleon resonances in deformed nuclei. Phys. Rev. Lett. 78, 1640–1643 (1997)

    Article  ADS  Google Scholar 

  6. Kukulin, V.I., Krasnopol’sly, V.M., Horáček, J.: Theory of Resonances. Kluwer Academic Press, Dordrecht (1989)

    MATH  Google Scholar 

  7. Tanaka, N., Suzuki, Y., Varga, K.: Exploration of resonances by analytic continuation in the coupling constant. Phys. Rev. C 56, 562–565 (1997)

    Article  ADS  Google Scholar 

  8. Tanaka, N., Suzuki, Y., Varga, K., Lovas, R.G.: Unbound states by analytic continuation in the coupling constant. Phys. Rev. C 59, 1391–1399 (1999)

    Article  ADS  Google Scholar 

  9. Taylor, J.R.: Scattering Theory. Wiley, New York (1972)

    Google Scholar 

  10. Cattapan, G., Maglione, E.: From bound states to resonances: analytic continuation of the wave function. Phys. Rev. C 61, 067301/1–4 (2000)

    Google Scholar 

  11. Davids, C.N., Esbensen, H.: Decay rates of spherical and deformed proton emitters. Phys. Rev. C 61, 044302/1–5 (2000)

    Google Scholar 

  12. Satchler, G.R.: Direct Nuclear Reactions. Clarendon Press, Oxford (1983)

    Google Scholar 

  13. Bugrov, V.P., Kadmensky, S.G., Furman, V.I., Khlebostroev, V.G.: Multiparticle variant of proton and neutron radioactivity—the case of diagonal transitions. Yad. Fiz. 41, 1123 (1985) [Sov. J. Nucl. Phys. 41, 717–723 (1985)]

    Google Scholar 

  14. Bugrov, V.P., Kadmensky, S.G.: Proton decay of deformed nuclei. Yad. Fiz. 49, 1562 (1989) [Sov. J. Nucl. Phys. 49, 967–972 (1989)]

    Google Scholar 

  15. Kadmensky, S.G.: On absolute values of α-widths for heavy spherical nuclei. Z. Phys. A 312, 113–120 (1983)

    Article  ADS  Google Scholar 

  16. Becchetti, F.D. Jr., Greenlees, G.W.: Nucleon-nucleon optical-model parameters, A > 40, E < 50 MeV. Phys. Rev. 182, 1190–1209 (1969)

    Article  ADS  Google Scholar 

  17. Kadmensky, S.G., Bugrov, V.P.: Yad. Fiz. 59, 424 (1996) [Phys. At. Nucl. 59, 399 (1996)]

    Google Scholar 

  18. Gurvitz, S.A., Kalbermann, G.: Decay width and shift of a quasistationary state. Phys. Rev. Lett. 59, 262–265 (1987)

    Article  ADS  Google Scholar 

  19. Gurvitz, S.A.: New approach to tunneling problems. Phys. Rev. A 38, 1747–1759 (1988)

    Article  ADS  Google Scholar 

  20. Jackson, D.F., Rhoades-Brown, M.: Theories of alpha-decay. Ann. Phys. 105, 151 (1977)

    Article  ADS  Google Scholar 

  21. Berggren, T., Olanders, P.: Alpha decay from deformed nuclei: (I) formalism and application to ground-state cedays. Nucl. Phys. A 473, 189–220 (1987)

    Article  ADS  Google Scholar 

  22. Berggren, T.: Anisotropic alpha decay from oriented odd-mass isotopes of some light actinides. Phys. Rev. C 50, 2494–2507 (1994)

    Article  ADS  Google Scholar 

  23. Esbensen, H., Davids, C.N.: Coupled-channels treatment of deformed proton emitters. Phys. Rev. C 63, 014315/1–13 (2000)

    Google Scholar 

  24. Nilsson, S.G.: Binding state of individual nucleons in strongly deformed nuclei. Kgl. Danske Videnskab. Selskab Mat. Fys. Medd. 29(16) (1955)

    Google Scholar 

  25. Fiorin, G., Maglione, E., Ferreira, L.S.: Theoretical description of deformed proton emitters: nonadiabatic quasiparticle method. Phys. Rev. C 67, 054302/1–4 (2003)

    Google Scholar 

  26. Maglione, E., Ferreira, L.S., Liotta, R.J.: Nucleon decay from deformed nuclei. Phys. Rev. Lett. 81, 538–541 (1998)

    Article  ADS  Google Scholar 

  27. Maglione, E., Ferreira, L.S., Liotta, R.J.: Proton emission from deformed nuclei. Phys. Rev. C 59, R589–R592 (1999)

    Article  ADS  Google Scholar 

  28. Cwiok, S., Dudek, J., Nazarewicz, W., Skalski, J., Werner, T.: Single-particle energies, wave functions, quadrupole moments and g-factors in an axially deformed Woods-Saxon potential with applications to the two-centre-type nuclear problem. Comput. Phys. Commun. 46, 379–399 (1987)

    Article  ADS  Google Scholar 

  29. Ferreira, L.S., Maglione, E.: 151Lu: spherical or deformed? Phys. Rev. C 61, 021304(R)/1–3 (2000)

    Google Scholar 

  30. Möller, P., Nix, R.J., Myers, W.D., Swiatecki, W.: Nuclear ground-state masses and deformations. At. Data Nucl. Data Tables 59, 185–381 (1995)

    Article  ADS  Google Scholar 

  31. Maglione, E., Ferreira, L.S.: Fine structure in proton emission from deformed 131Eu. Phys. Rev. C 61, 047307/1–3 (2000)

    Google Scholar 

  32. Sonzogni, A.A., Davids, C.N., Woods, P.J., et al.: Fine structure in the decay of the highly deformed proton emitter 131Eu. Phys. Rev. Lett. 83, 1116–1118 (1999)

    Article  ADS  Google Scholar 

  33. Ferreira, L.S., Maglione, E., Fernandes, D.E.P.: Dependence of the decay widths for proton emission on the single particle potential. Phys. Rev. C 65, 024323/1–9 (2002)

    Google Scholar 

  34. Cherpunov, V.A.: Yad. Fiz. 6, 955 (1967)

    Google Scholar 

  35. Blomqvist, J., Wahlborn, S.: Shell model calculations in the Lead region with a diffuse nuclear potential. Ark. Fys. 16, 545–566 (1960)

    Google Scholar 

  36. Rost, E.: Protron shell-model potentials for Lead and the stability of superheavy nuclei. Phys. Lett. 26 B, 184–187 (1968)

    Google Scholar 

  37. Dudek, J., Szymanski, Z., Werner, T., Faessler, A., Lima, C.: Description of high spin states in 146Gd using the optimized Woods-Saxon potential. Phys. Rev. C 26, 1712–1718 (1982)

    Article  ADS  Google Scholar 

  38. Kruppa, A.T., Barmore, B., Nazarewicz, W., Vertse, T.: Fine structure in the decay of deformed proton emitters: nonadiabatic approach. Phys. Rev. Lett. 84, 4549–4552 (2000)

    Article  ADS  Google Scholar 

  39. Barmore, B., Kruppa, A.T., Nazarewicz, W., Vertse, T.: Theoretical description of deformed proton emitters: nonadiabatic coupled-channel method. Phys. Rev. C 62, 054315/1–12 (2000)

    Google Scholar 

  40. Barmore, B., Kruppa, A.T., Nazarewicz, W., Vertse, T.: A new approach to deformed proton emitters: non-adiabatic coupled-channels. Nucl. Phys. A 682, 256c–263c (2001)

    Article  ADS  Google Scholar 

  41. Delion, D.S., Liotta, R.J., Wyss, R.: High-spin proton emitters in odd-odd nuclei and shape changes. Phys. Rev. C 68, 054603(R)/1–5 (2003)

    Google Scholar 

  42. Ferreira, L.S., Maglione, E.: Odd-odd deformed proton emitters. Phys. Rev. Lett. 86, 1721–1724 (2001)

    Article  ADS  Google Scholar 

  43. Bohr, A., Mottelson, B.: Nuclear Structure. Benjamin, New York (1975)

    Google Scholar 

  44. Davids, C.N., Esbensen, H.: Decay rate of triaxially deformed proton emitters. Phys. Rev. C 69, 043314/1–9 (2004)

    Google Scholar 

  45. Davids, C.N., Woods, P.J., Mahmud, H., et al.: Proton decay of the highly deformed odd-odd nucleus 130Eu. Phys. Rev. C 69, 011302(R)/1–3 (2004)

    Google Scholar 

  46. Delion, D.S., Wyss, R., Karlgren, D., Liotta, R.J.: Proton emission from triaxial nuclei. Phys. Rev. C 70, 061301(R)/1–5 (2004)

    Google Scholar 

  47. Kruppa, A.T., Nazarewicz, W.: Gamow and R-Matrix approach to proton emitting nuclei. Phys. Rev. C 69, 054311/1–11 (2004)

    Google Scholar 

  48. Kadmensky, S.G., Sonzogni, A.A.: Proton angular distributions from oriented proton-emitting nuclei. Phys. Rev. C 62, 054601/1–5 (2000)

    Google Scholar 

  49. Rafiqullah, A.K.: Alpha decay of nonaxial nuclei. Phys. Rev. 127, 905–913 (1962)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doru S. Delion .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Delion, D.S. (2010). Coupled Channels Methods. In: Theory of Particle and Cluster Emission. Lecture Notes in Physics, vol 819. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14406-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14406-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14405-9

  • Online ISBN: 978-3-642-14406-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics