Skip to main content

Global Symmetry, Local Symmetry, and the Lattice

  • Chapter
  • First Online:
An Introduction to the Confinement Problem

Part of the book series: Lecture Notes in Physics ((LNP,volume 821))

  • 2422 Accesses

Abstract

Confinement in non-abelian gauge theory involves the idea that the vacuum state is disordered at large scales; our best evidence that this is true comes from Monte Carlo simulations of lattice gauge theories. So to begin with, I need to explain what is meant by

  • a disordered state,

  • a lattice gauge theory,

  • a Monte Carlo simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The construction was first introduced by Wegner [2].

  2. 2.

    This leading-order (in 1/m 2) result is obtained by neglecting the one-link term in S matter everywhere except along the time-like links from t = 0 to t = T, at x = 0 and x = R. On these links, expand \(\exp[\phi^\dagger U_0 {\phi}+\hbox{h.c.}] \approx 1 + \phi^{\dagger}U_0 {\phi}+\hbox{h.c.}\). Integration over the scalar field then yields the result (2.32).

  3. 3.

    One approach, based on the non-abelian Stokes Law, derives an area law for a large Wilson loop from an assumed finite range behavior of field strength correlators, which means that field strengths are uncorrelated, i.e. disordered, at sufficiently large separations. This “field correlator” approach to magnetic disorder has been pursued by Simonov and co-workers [10].

  4. 4.

    The Wilson loop calculation is a little easier in two dimensions with free boundary conditions. Periodic boundary conditions introduce a correction which is irrelevant for N p large.

References

  1. Elitzur, S.: Impossibility of spontaneously breaking local symmetries. Phys. Rev. D 12, 3978–3982 (1975)

    Article  ADS  Google Scholar 

  2. Wegner, F.J.: Duality in generalized Ising models and phase transitions without local order parameter. J. Math. Phys. 12, 2259–2272 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  3. DeGrand, T., DeTar, C.E.: Lattice Methods for Quantum Chromodynamics. World Scientific, Singapore (2006)

    Book  MATH  Google Scholar 

  4. Seiberg, N.: Electric–magnetic duality in supersymmetric non-Abelian gauge theories. Nucl. Phys. B 435, 129–146 (1995) (arXiv:hep-th/9411149)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Intriligator, K.A., Seiberg, N.: Phases of N = 1 supersymmetric gauge theories and electric–magnetic triality. In: Strings 95: Future Perspectives in String Theory (arXiv:hep-th/9506084)

    Google Scholar 

  6. Diakonov, D., Petrov, V.Y.: A formula for the Wilson loop. Phys. Lett. B 224, 131–135 (1989)

    Article  ADS  Google Scholar 

  7. Karp, R.L., Mansouri, F., Rno, J.S.: Product integral formalism and non-Abelian stokes theorem. J. Math. Phys. 40, 6033–6043 (1999) (arXiv:hep-th/9910173)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Arefeva, I.: Non-Abelian Stokes formula. Theor. Math. Phys. 43, 353–356 (1980) (Teor. Mat. Fiz. 43, 111 (1980))

    Article  MathSciNet  Google Scholar 

  9. Fishbane, P.M., Gasiorowicz, S., Kaus, P.: Stokes's theorems for non-Abelian fields. Phys. Rev. D 24, 2324–2329 (1981)

    Article  ADS  Google Scholar 

  10. DiGiacomo, A., Dosch, H.G., Shevchenko, V.I., Simonov, Yu. A.: Field correlators in QCD: Theory and applications. Phys. Rep. 372, 319–368 (2002) (arXiv:hep-ph/0007223)

    Article  MathSciNet  ADS  Google Scholar 

  11. Halpern, M.B.: Field strength and dual variable formulations of gauge theory. Phys. Rev. D 19, 517–530 (1979)

    Article  ADS  Google Scholar 

  12. Batrouni, G.G., Halpern, M.B.: String, corner and plaquette formulation of finite lattice gauge theory. Phys. Rev. D 30, 1782–1790 (1984)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Greensite .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Greensite, J. (2010). Global Symmetry, Local Symmetry, and the Lattice. In: An Introduction to the Confinement Problem. Lecture Notes in Physics, vol 821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14382-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14382-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14381-6

  • Online ISBN: 978-3-642-14382-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics