Skip to main content

Causality Inversion in the Reproduction of Roughness

  • Conference paper
Haptics: Generating and Perceiving Tangible Sensations (EuroHaptics 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6192))

Abstract

When a finger scans a non-smooth surface, a sensation of roughness is experienced. A similar sensation is felt when a finger is in contact with a mobile surface vibrating in the tangential direction. Since an actual finger-surface interaction results in a varying friction force, how can a measured friction force can be converted into skin relative displacement. With a bidirectional apparatus that can measure this force and transform it into displacement with unambiguous causality, such mapping could be experimentally established. A pilot study showed that a subjectively equivalent sensation of roughness can be achieved betweem a fixed real surface and a vibrated mobile surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lederman, S.J., Taylor, M.M.: Fingertip force, surface geometry, and the perception of roughness by active touch. Perception & Psychophysics 12(5), 401–408 (1972)

    Article  Google Scholar 

  2. Campion, G., Hayward, V.: On the synthesis of haptic textures. IEEE Transactions on Robotics 24(3), 527–536 (2008)

    Article  Google Scholar 

  3. Yamamoto, A., Nagasawa, S., Yamamoto, H., Higuchi, T.: Electrostatic tactile display with thin film slider and its application to tactile telepresentation systems. IEEE Transactions on Visualization and Computer Graphics 12(2), 168–177 (2006)

    Article  Google Scholar 

  4. Takasaki, M., Kotani, H., Mizuno, T., Nara, T.: Transparent surface acoustic wave tactile display. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2005, pp. 3354–3359 (2005)

    Google Scholar 

  5. Biet, M., Giraud, F., Lemaire-Semail, B.: Squeeze film effect for the design of an ultrasonic tactile plate. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 54(12), 2678–2688 (2007)

    Article  Google Scholar 

  6. Winfield, L., Glassmire, J., Colgate, J.E., Peshkin, M.: T-PaD: tactile pattern display through variable friction reduction. In: Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics, pp. 421–426 (2007)

    Google Scholar 

  7. Smith, A.M., Chapman, E.C., Deslandes, M., Langlais, J.S., Thibodeau, M.P.: Role of friction and tangential force variation in the subjective scaling of tactile roughness. Experimental Brain Research 144(2), 211–223 (2002)

    Article  Google Scholar 

  8. Smith, A.M., Basile, G., Theriault-Groom, J., Fortier-Poisson, P., Campion, G., Hayward, V.: Roughness of simulated surfaces examined with a haptic tool; effects of spatial period, friction, and resistance amplitude. Experimental Brain Research 202(1), 33–43 (2010)

    Article  Google Scholar 

  9. Maeno, T., Otokawa, K., Konyo, M.: Tactile display of surface texture by use of amplitude modulation of ultrasonic vibration. In: IEEE Ultrasonics Symposium, pp. 62–65 (2006)

    Google Scholar 

  10. Hogan, N.: Impedance control: An approach to manipulation. Journal of Dynamic Systems, Measurements, and Control 107, 1–7 (1985)

    Article  MATH  Google Scholar 

  11. Campion, G., Hayward, V.: Fast calibration of haptic texture synthesis algorithms. IEEE Transactions on Haptics 2(2), 85–93 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wiertlewski, M., Lozada, J., Pissaloux, E., Hayward, V. (2010). Causality Inversion in the Reproduction of Roughness. In: Kappers, A.M.L., van Erp, J.B.F., Bergmann Tiest, W.M., van der Helm, F.C.T. (eds) Haptics: Generating and Perceiving Tangible Sensations. EuroHaptics 2010. Lecture Notes in Computer Science, vol 6192. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14075-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14075-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14074-7

  • Online ISBN: 978-3-642-14075-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics