Skip to main content

Majority Adder Implementation by Competing Patterns in Life-Like Rule B2/S2345

  • Conference paper
Unconventional Computation (UC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6079))

Included in the following conference series:

Abstract

We study Life-like cellular automaton rule B2/S2345. This automaton exhibits a chaotic behavior yet capable for purposeful computation. The automaton implements Boolean gates via patterns which compete for the space when propagate in channels. Values of Boolean variables are encoded into two types of patterns — symmetric (False) and asymmetric (True). We construct basic logical gates and elementary arithmetical circuits by simulating logical signals using glider reactions taking place in the channels built of non-destructible still lifes. We design a binary adder of majority gates realised in rule B2/S2345.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamatzky, A. (ed.): Collision-Based Computing. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  2. Adamatzky, A.: Hot ice computer. Physics Letters A 374(2), 264–271 (2009)

    Article  Google Scholar 

  3. Adamatzky, A. (ed.): Game of Life Cellular Automata. Springer, Heidelberg (2010)

    Google Scholar 

  4. Adamatzky, A., Costello, B.L., Asai, T.: Reaction-Diffusion Computers. Elsevier, Amsterdam (2005)

    Google Scholar 

  5. Adamatzky, A., Martínez, G.J., Seck-Tuoh-Mora, J.C.: Phenomenology of reaction-diffusion binary-state cellular automata. Int. J. Bifurcation and Chaos 16(10), 1–21 (2006)

    Google Scholar 

  6. Adachi, S., Peper, F., Lee, J., Umeo, H.: Occurrence of gliders in an infinite class of Life-like cellular automata. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 32–41. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Banks, E.R.: Information Processing and Transmission in Cellular Automata, Ph.D. thesis Department of Mechanical Engineering, MIT (1971)

    Google Scholar 

  8. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for your Mathematical Plays, ch. 25, vol. 2. Academic Press, London (1982)

    Google Scholar 

  9. Chapman, P.: Life Universal Computer (2002), http://www.igblan.free-online.co.uk/igblan/ca/

  10. Codd, E.F.: Cellular Automata. Academic Press, London (1968)

    MATH  Google Scholar 

  11. Cook, M.: Still Life Theory. In: [15], pp. 93–118 (2003)

    Google Scholar 

  12. Eppstein, D.: Growth and decay in Life-like cellular automata, arXiv:0911.2890v1 (nlin.CG) (2009)

    Google Scholar 

  13. Gardner, M.: Mathematical Games — The fantastic combinations of John H. Conway’s new solitaire game Life. Scientific American 223, 120–123 (1970)

    Article  Google Scholar 

  14. Griffeath, D., Moore, C.: Life Without Death is P-complete. Complex Systems 10, 437–447 (1996)

    MATH  MathSciNet  Google Scholar 

  15. Griffeath, D., Moore, C. (eds.): New constructions in cellular automata. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  16. Goucher, A.: Completed Universal Computer/Constructor (2009), http://pentadecathlon.com/lifeNews/2009/08/post.html

  17. Gravner, J.: Growth Phenomena in Cellular Automata. In: [15], pp. 161–181 (2003)

    Google Scholar 

  18. Hameroff, S.R.: Ultimate Computing: Biomolecular Consciousness and Nanotechnology. Elsevier Science Publishers BV, Amsterdam (1987)

    Google Scholar 

  19. Imai, K., Morita, K.: A computation-universal two-dimensional 8-state triangular reversible cellular automaton. Theoret. Comput. Sci. 231, 181–191 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Martínez, G.J., Adamatzky, A., Costello, B.L.: On logical gates in precipitating medium: cellular automaton model. Physics Letters A 1(48), 1–5 (2008)

    Google Scholar 

  21. Martínez, G.J., Adamatzky, A., McIntosh, H.V.: Localization dynamic in a binary two-dimensional cellular automaton: the Diffusion Rule. arXiv:0908.0828v1 (cs.FL) (2009)

    Google Scholar 

  22. Martínez, G.J., Adamatzky, A., McIntosh, H.V., Costello, B.L.: Computation by competing patterns: Life rule B2/S2345678. In: Adamatzky, A., et al. (eds.) Automata 2008: Theory and Applications of Cellular Automata. Luniver Press (2008)

    Google Scholar 

  23. McIntosh, H.V.: Life’s Still Lifes (1988), http://delta.cs.cinvestav.mx/~mcintosh

  24. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  25. Mitchell, M.: Life and evolution in computers. History and Philosophy of the Life Sciences 23, 361–383 (2001)

    Google Scholar 

  26. Magnier, M., Lattaud, C., Heudin, J.-K.: Complexity Classes in the Two-dimensional Life Cellular Automata Subspace. Complex Systems 11(6), 419–436 (1997)

    MATH  MathSciNet  Google Scholar 

  27. Morita, K., Margenstern, M., Imai, K.: Universality of reversible hexagonal cellular automata. Theoret. Informatics Appl. 33, 535–550 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Martínez, G.J., Méndez, A.M., Zambrano, M.M.: Un subconjunto de autómata celular con comportamiento complejo en dos dimensiones (2005), http://uncomp.uwe.ac.uk/genaro/Papers/Papers_on_CA.html

  29. Porod, W., Lent, C.S., Bernstein, G.H., Orlov, A.O., Amlani, I., Snider, G.L., Merz, J.L.: Quantum-dot cellular automata: computing with coupled quantum dots. Int. J. Electronics 86(5), 549–590 (1999)

    Article  Google Scholar 

  30. Packard, N., Wolfram, S.: Two-dimensional cellular automata. J. Statistical Physics 38, 901–946 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  31. Rendell, P.: Turing universality of the game of life. In: [1], pp. 513–540 (2002)

    Google Scholar 

  32. Rennard, J.P.: Implementation of Logical Functions in the Game of Life. In: [1], pp. 491–512 (2002)

    Google Scholar 

  33. Toffoli, T.: Non-Conventional Computers. In: Webster, J. (ed.) Encyclopedia of Electrical and Electronics Engineering, vol. 14, pp. 455–471. Wiley & Sons, Chichester (1998)

    Google Scholar 

  34. von Neumann, J.: Theory of Self-reproducing Automata. In: Burks, A.W. (ed. and completed). University of Illinois Press, Urbana (1966)

    Google Scholar 

  35. Wainwright, R. (ed.): Lifeline - A Quaterly Newsletter for Enthusiasts of John Conway’s Game of Life, vol. (1-11), (March 1971-September 1973)

    Google Scholar 

  36. Walus, K., Schulhof, G., Zhang, R., Wang, W., Jullien, G.A.: Circuit design based on majority gates for applications with quantum-dot cellular automata. In: Proceedings of IEEE Asilomar Conference on Signals, Systems, and Computers (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martínez, G.J., Morita, K., Adamatzky, A., Margenstern, M. (2010). Majority Adder Implementation by Competing Patterns in Life-Like Rule B2/S2345. In: Calude, C.S., Hagiya, M., Morita, K., Rozenberg, G., Timmis, J. (eds) Unconventional Computation. UC 2010. Lecture Notes in Computer Science, vol 6079. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13523-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13523-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13522-4

  • Online ISBN: 978-3-642-13523-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics