Skip to main content

Recurrent Prostate Cancer and Metastatic Disease

  • Reference work entry
Abdominal Imaging

Abstract

Recurrent prostate cancer can be found in 20–50% of patients after radical prostatectomy within 10 years following primary treatment and up to 53% within 10 years post 3D conformal radiation therapy. About 50% of the patients develop local recurrence while the others develop metastatic disease with or without local recurrence. In most cases, recurrence will be diagnosed by raising PSA levels, which is a sensitive biomarker for recurrence; however, it does not allow differentiation between local, regional, and systemic disease.

A lot of PET tracers have been used in imaging prostate cancer based on increased glycolysis ([18F]FDG), fatty acid synthesis ([11C]acetate), amino acid transport and protein synthesis ([11C]methionine), androgen-receptor expression ([18F]FDHT), osteoblastic activity ([18F]fluoride) as well as cell membrane proliferation by radiolabeled phospholipids ([11C]- and of [18F]choline). Among these radioactively labeled choline derivates are most commonly used.

PET and PET/CT using [11C]- and [18F]-labeled choline derivates is a promising imaging modality for imaging recurrent and advanced prostate cancer which is increasingly being used. Its value in restaging prostate cancer has been analyzed in numerous studies.

The detection rate of PET and PET/CT using [11C]- and [18F]-labeled choline derivates in patients with biochemical recurrence for local, regional, and distant recurrence shows a linear correlation with PSA value at the time of imaging. At PSA levels below 1 ng/mL, diagnosis of recurrence is possible in 20–30% of the patients and reaches about 75% in patients with a serum PSA value > 3 ng/mL.

Additionally, it has been shown that the detection rate of [11C]choline PET/CT is closely related to PSA doubling time which is an additional independent predictor of choline PET/CT positivity.

PET/CT – in comparison to PET – especially improves the lesion localization as well as characterization of lymph node metastasis and bone metastases.

Bone is the second most common site of metastatic disease after lymph nodes in prostate cancer. The occurrence of bone metastases is related to a poor prognosis and is one of the major causes of morbidity and mortality in patients with advanced prostate cancer.

Therefore, early detection of metastatic bone disease and its extent is crucial for staging, restaging, and treatment.

Since an early diagnosis of recurrent prostate cancer and the exact localization of the site of recurrence (local recurrence, lymph nodal involvement, or systemic recurrence including bone metastases) have a direct influence on therapeutic strategy, PET and PET/CT with [11C]- and [18F]choline derivates can be helpful in the clinical setting with respect to disease management and individualized therapy strategies.

This chapter focuses on the use of PET and PET/CT with [11C]- and [18F]-labeled choline derivates in imaging prostate cancer with special emphasis on patients with recurrent prostate cancer and metastatic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ackerstaff E, Pflug BR, et al. Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells. Cancer Res. 2001;61(9):3599–603.

    PubMed  CAS  Google Scholar 

  • Ackerstaff E, Glunde K, et al. Choline phospholipid metabolism: a target in cancer cells? J Cell Biochem. 2003;90(3):525–33.

    Article  PubMed  CAS  Google Scholar 

  • Albrecht S, Buchegger F, et al. (11)C-acetate PET in the early evaluation of prostate cancer recurrence. Eur J Nucl Med Mol Imaging. 2007;34(2):185–96.

    Article  PubMed  Google Scholar 

  • Beer AJ, Eiber M, et al. Restricted water diffusibility as measured by diffusion-weighted MR imaging and choline uptake in (11)C-choline PET/CT are correlated in pelvic lymph nodes in patients with prostate cancer. Mol Imaging Biol. 2011;13(2):352–61.

    Article  PubMed  Google Scholar 

  • Beheshti M, Vali R, et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging. 2008;35(10):1766–74.

    Article  PubMed  Google Scholar 

  • Beheshti M, Vali R, et al. The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT. Mol Imaging Biol. 2010;12(1):98–107.

    Article  PubMed  Google Scholar 

  • Bott SR. Management of recurrent disease after radical prostatectomy. Prostate Cancer Prostatic Dis. 2004;7(3):211–6.

    Article  PubMed  CAS  Google Scholar 

  • Casciani E, Gualdi GF. Prostate cancer: value of magnetic resonance spectroscopy 3D chemical shift imaging. Abdom Imaging. 2006;31(4):490–9.

    Article  PubMed  Google Scholar 

  • Castellucci P, Fuccio C, et al. Influence of trigger PSA and PSA kinetics on 11C-Choline PET/CT detection rate in patients with biochemical relapse after radical prostatectomy. J Nucl Med. 2009;50(9):1394–400.

    Article  PubMed  Google Scholar 

  • Castellucci P, Fuccio C, et al. Is there a role for (1)(1)C-choline PET/CT in the early detection of metastatic disease in surgically treated prostate cancer patients with a mild PSA increase <1.5 ng/ml? Eur J Nucl Med Mol Imaging. 2011;38(1):55–63.

    Article  PubMed  Google Scholar 

  • Chism DB, Hanlon AL, et al. A comparison of the single and double factor high-risk models for risk assignment of prostate cancer treated with 3D conformal radiotherapy. Int J Radiat Oncol Biol Phys. 2004;59(2):380–5.

    Article  PubMed  Google Scholar 

  • Cimitan M, Bortolus R, et al. [18F]fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imaging. 2006;33(12):1387–98.

    Article  PubMed  Google Scholar 

  • Coakley FV, Teh HS, et al. Endorectal MR imaging and MR spectroscopic imaging for locally recurrent prostate cancer after external beam radiation therapy: preliminary experience. Radiology. 2004;233(2):441–8.

    Article  PubMed  Google Scholar 

  • Coleman MD, Rathbone DL, et al. Preliminary in vitro toxicological evaluation of a series of 2-pyridylcarboxamidrazone candidate anti-tuberculosis compounds: II(1). Environ Toxicol Pharmacol. 2000;8(3):167–72.

    Article  PubMed  CAS  Google Scholar 

  • Connolly JA, Shinohara K, et al. Local recurrence after radical prostatectomy: characteristics in size, location, and relationship to prostate-specific antigen and surgical margins. Urology. 1996;47(2):225–31.

    Article  PubMed  CAS  Google Scholar 

  • de Jong IJ, Pruim J, et al. 11C-choline positron emission tomography for the evaluation after treatment of localized prostate cancer. Eur Urol. 2003;44(1):32–8. discussion 38–39.

    Article  PubMed  Google Scholar 

  • Dehdashti F, Picus J, et al. Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur J Nucl Med Mol Imaging. 2005;32(3):344–50.

    Article  PubMed  Google Scholar 

  • Eiber M, Beer AJ, et al. Preliminary results for characterization of pelvic lymph nodes in patients with prostate cancer by diffusion-weighted MR-imaging. Invest Radiol. 2010;45(1):15–23.

    Article  PubMed  Google Scholar 

  • Freedland SJ, Presti Jr JC, et al. Time trends in biochemical recurrence after radical prostatectomy: results of the SEARCH database. Urology. 2003;61(4):736–41.

    Article  PubMed  Google Scholar 

  • Giovacchini G, Picchio M, et al. [(11)C]choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. Eur J Nucl Med Mol Imaging. 2008;35(6):1065–73.

    Article  PubMed  CAS  Google Scholar 

  • Giovacchini G, Picchio M, et al. Predictive factors of [(11)C]choline PET/CT in patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging. 2010a;37(2):301–9.

    Article  PubMed  Google Scholar 

  • Giovacchini G, Picchio M, et al. [11C]choline positron emission tomography/computerized tomography to restage prostate cancer cases with biochemical failure after radical prostatectomy and no disease evidence on conventional imaging. J Urol. 2010b;184(3):938–43.

    Article  PubMed  Google Scholar 

  • Han M, Partin AW, et al. Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer. J Urol. 2003;169(2):517–23.

    Article  PubMed  Google Scholar 

  • Hara T, Bansal A, et al. Choline transporter as a novel target for molecular imaging of cancer. Mol Imaging. 2006;5(4):498–509.

    PubMed  Google Scholar 

  • Heinisch M, Dirisamer A, et al. Positron emission tomography/computed tomography with F-18-fluorocholine for restaging of prostate cancer patients: meaningful at PSA < 5 ng/ml? Mol Imaging Biol. 2006;8(1):43–8.

    Article  PubMed  Google Scholar 

  • Hofer C, Laubenbacher C, et al. Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol. 1999;36(1):31–5.

    Article  PubMed  CAS  Google Scholar 

  • Hoh CK, Schiepers C, et al. PET in oncology: will it replace the other modalities? Semin Nucl Med. 1997;27(2):94–106.

    Article  PubMed  CAS  Google Scholar 

  • Husarik DB, Miralbell R, et al. Evaluation of [(18)F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35(2):253–63.

    Article  PubMed  Google Scholar 

  • Jager GJ, Barentsz JO, et al. Pelvic adenopathy in prostatic and urinary bladder carcinoma: MR imaging with a three-dimensional TI-weighted magnetization-prepared-rapid gradient-echo sequence. AJR Am J Roentgenol. 1996;167(6):1503–7.

    Article  PubMed  CAS  Google Scholar 

  • Jemal A, Siegel R, et al. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225–49.

    Article  PubMed  Google Scholar 

  • Kane CJ, Amling CL, et al. Limited value of bone scintigraphy and computed tomography in assessing biochemical failure after radical prostatectomy. Urology. 2003;61(3):607–11.

    Article  PubMed  Google Scholar 

  • Katz-Brull R, Degan H. Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR application of the zero trans method. Anticancer Res. 1996;16(3B):1375–80.

    PubMed  CAS  Google Scholar 

  • Kotzerke J, Prang J, et al. Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur J Nucl Med. 2000;27(9):1415–9.

    Article  PubMed  CAS  Google Scholar 

  • Kramer S, Gorich J, et al. Sensitivity of computed tomography in detecting local recurrence of prostatic carcinoma following radical prostatectomy. Br J Radiol. 1997;70(838):995–9.

    PubMed  CAS  Google Scholar 

  • Krause BJ, Souvatzoglou M, et al. The detection rate of [11C]choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35(1):18–23.

    Article  PubMed  CAS  Google Scholar 

  • Krause BJ, Souvatzoglou M, et al. [11C]Choline as pharmacodynamic marker for therapy response assessment in a prostate cancer xenograft model. Eur J Nucl Med Mol Imaging. 2010;37(10):1861–8.

    Article  PubMed  CAS  Google Scholar 

  • Krause BJ, Souvatzoglou M, et al. Imaging of prostate cancer with PET/CT and radioactively labeled choline derivates. Urol Oncol. 2011 [Epub ahead of print]

    Google Scholar 

  • Langsteger W, Balogova S, et al. Fluorocholine (18F) and sodium fluoride (18F) PET/CT in the detection of prostate cancer: prospective comparison of diagnostic performance determined by masked reading. Q J Nucl Med Mol Imaging. 2011;55(4):448–57.

    PubMed  CAS  Google Scholar 

  • Larson SM, Morris M, et al. Tumor localization of 16beta-18F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med. 2004;45(3):366–73.

    PubMed  CAS  Google Scholar 

  • Morris MJ, Akhurst T, et al. Fluorinated deoxyglucose positron emission tomography imaging in progressive metastatic prostate cancer. Urology. 2002;59(6):913–8.

    Article  PubMed  Google Scholar 

  • Nunez R, Macapinlac HA, et al. Combined 18F-FDG and 11C-methionine PET scans in patients with newly progressive metastatic prostate cancer. J Nucl Med. 2002;43(1):46–55.

    PubMed  Google Scholar 

  • Oyen RH, Van Poppel HP, et al. Lymph node staging of localized prostatic carcinoma with CT and CT-guided fine-needle aspiration biopsy: prospective study of 285 patients. Radiology. 1994;190(2):315–22.

    PubMed  CAS  Google Scholar 

  • Panebianco V, Sciarra A, et al. Prostate cancer: 1HMRS-DCEMR at 3T versus [(18)F]choline PET/CT in the detection of local prostate cancer recurrence in men with biochemical progression after radical retropubic prostatectomy (RRP). Eur J Radiol. 2012;81(4):700–8.

    Article  PubMed  Google Scholar 

  • Picchio M, Messa C, et al. Value of [11C]choline-positron emission tomography for re-staging prostate cancer: a comparison with [18F]fluorodeoxyglucose-positron emission tomography. J Urol. 2003;169(4):1337–40.

    Article  PubMed  CAS  Google Scholar 

  • Pucar D, Shukla-Dave A, et al. Prostate cancer: correlation of MR imaging and MR spectroscopy with pathologic findings after radiation therapy-initial experience. Radiology. 2005;236(2):545–53.

    Article  PubMed  Google Scholar 

  • Ramirez de Molina A, Penalva V, et al. Regulation of choline kinase activity by Ras proteins involves Ral-GDS and PI3K. Oncogene. 2002a;21(6):937–46.

    Article  PubMed  CAS  Google Scholar 

  • Ramirez de Molina A, Rodriguez-Gonzalez A, et al. Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers. Biochem Biophys Res Commun. 2002b;296(3):580–3.

    Article  PubMed  CAS  Google Scholar 

  • Ratnam S, Kent C. Early increase in choline kinase activity upon induction of the H-ras oncogene in mouse fibroblast cell lines. Arch Biochem Biophys. 1995;323(2):313–22.

    Article  PubMed  CAS  Google Scholar 

  • Reske SN, Blumstein NM, et al. [11C]choline PET/CT imaging in occult local relapse of prostate cancer after radical prostatectomy. Eur J Nucl Med Mol Imaging. 2008;35(1):9–17.

    Article  PubMed  Google Scholar 

  • Rigatti P, Suardi N, et al. Pelvic/retroperitoneal salvage lymph node dissection for patients treated with radical prostatectomy with biochemical recurrence and nodal recurrence detected by [11C]choline positron emission tomography/computed tomography. Eur Urol. 2011;60(5):935–43.

    Article  PubMed  Google Scholar 

  • Rinnab L, Mottaghy FM, et al. Evaluation of [11C]-choline positron-emission/computed tomography in patients with increasing prostate-specific antigen levels after primary treatment for prostate cancer. BJU Int. 2007;100(4):786–93.

    Article  PubMed  CAS  Google Scholar 

  • Roberts SG, Blute ML, et al. PSA doubling time as a predictor of clinical progression after biochemical failure following radical prostatectomy for prostate cancer. Mayo Clin Proc. 2001;76(6):576–81.

    PubMed  CAS  Google Scholar 

  • Scattoni V, Picchio M, et al. Detection of lymph-node metastases with integrated [11C]choline PET/CT in patients with PSA failure after radical retropubic prostatectomy: results confirmed by open pelvic-retroperitoneal lymphadenectomy. Eur Urol. 2007;52(2):423–9.

    Article  PubMed  Google Scholar 

  • Sella T, Schwartz LH, et al. Suspected local recurrence after radical prostatectomy: endorectal coil MR imaging. Radiology. 2004;231(2):379–85.

    Article  PubMed  Google Scholar 

  • Shekarriz B, Upadhyay J, et al. Vesicourethral anastomosis biopsy after radical prostatectomy: predictive value of prostate-specific antigen and pathologic stage. Urology. 1999;54(6):1044–8.

    Article  PubMed  CAS  Google Scholar 

  • Smith RA, Cokkinides V, et al. Cancer screening in the United States, 2007: a review of current guidelines, practices, and prospects. CA Cancer J Clin. 2007;57(2):90–104.

    Article  PubMed  CAS  Google Scholar 

  • Souvatzoglou M, Gaertner FC, et al. PET/CT for the diagnosis, staging and restaging of prostate cancer. Imaging Med. 2011a;3(5):571–85.

    Article  Google Scholar 

  • Souvatzoglou M, Krause BJ, et al. Influence of (11)C-choline PET/CT on the treatment planning for salvage radiation therapy in patients with biochemical recurrence of prostate cancer. Radiother Oncol. 2011b;99(2):193–200.

    Article  PubMed  Google Scholar 

  • Takeda M, Akiba H, et al. Value of multi-sectional fast contrast-enhanced MR imaging in patients with elevated PSA levels after radical prostatectomy. Am J Roentgenol. 2002;178(97).

    Article  Google Scholar 

  • Toth G, Lengyel Z, et al. Detection of prostate cancer with 11C-methionine positron emission tomography. J Urol. 2005;173(1):66–9. discussion 69.

    Article  PubMed  Google Scholar 

  • Tuncel M, Souvatzoglou M, et al. [(11)C]Choline positron emission tomography/computed tomography for staging and restaging of patients with advanced prostate cancer. Nucl Med Biol. 2008;35(6):689–95.

    Article  PubMed  CAS  Google Scholar 

  • Wachter S, Tomek S, et al. 11C-acetate positron emission tomography imaging and image fusion with computed tomography and magnetic resonance imaging in patients with recurrent prostate cancer. J Clin Oncol. 2006;24(16):2513–9.

    Article  PubMed  Google Scholar 

  • Watanabe H, Kanematsu M, et al. Preoperative detection of prostate cancer: a comparison with 11C-choline PET, 18F-fluorodeoxyglucose PET and MR imaging. J Magn Reson Imaging. 2010;31(5):1151–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd J. Krause .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Schwarzenböck, S., Souvatzoglou, M., Krause, B.J. (2013). Recurrent Prostate Cancer and Metastatic Disease. In: Hamm, B., Ros, P.R. (eds) Abdominal Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13327-5_218

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13327-5_218

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13326-8

  • Online ISBN: 978-3-642-13327-5

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics